Browse Source

groestl: explain code and improve perf on SM 2.x

Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
2upstream
Tanguy Pruvot 8 years ago
parent
commit
5a77d36635
  1. 1
      ccminer.vcxproj
  2. 3
      ccminer.vcxproj.filters
  3. 141
      quark/cuda_quark_groestl512.cu
  4. 267
      quark/cuda_quark_groestl512_sm2.cuh
  5. 342
      quark/cuda_quark_groestl512_sm20.cu
  6. 111
      quark/groestl_simple.cuh

1
ccminer.vcxproj

@ -353,6 +353,7 @@
<ClInclude Include="miner.h" /> <ClInclude Include="miner.h" />
<ClInclude Include="nvml.h" /> <ClInclude Include="nvml.h" />
<ClInclude Include="quark\cuda_bmw512_sm3.cuh" /> <ClInclude Include="quark\cuda_bmw512_sm3.cuh" />
<ClInclude Include="quark\cuda_quark_groestl512_sm2.cuh" />
<ClInclude Include="quark\cuda_quark_blake512_sp.cuh" /> <ClInclude Include="quark\cuda_quark_blake512_sp.cuh" />
<ClInclude Include="quark\cuda_skein512_sp.cuh" /> <ClInclude Include="quark\cuda_skein512_sp.cuh" />
<ClInclude Include="res\resource.h" /> <ClInclude Include="res\resource.h" />

3
ccminer.vcxproj.filters

@ -512,6 +512,9 @@
<ClInclude Include="quark\cuda_bmw512_sm3.cuh"> <ClInclude Include="quark\cuda_bmw512_sm3.cuh">
<Filter>Source Files\CUDA\quark</Filter> <Filter>Source Files\CUDA\quark</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="quark\cuda_quark_groestl512_sm2.cuh">
<Filter>Source Files\CUDA\quark</Filter>
</ClInclude>
<ClInclude Include="x11\cuda_x11_simd512_sm2.cuh"> <ClInclude Include="x11\cuda_x11_simd512_sm2.cuh">
<Filter>Source Files\CUDA\x11</Filter> <Filter>Source Files\CUDA\x11</Filter>
</ClInclude> </ClInclude>

141
quark/cuda_quark_groestl512.cu

@ -4,7 +4,7 @@
#include <memory.h> #include <memory.h>
#include <sys/types.h> // off_t #include <sys/types.h> // off_t
#include "cuda_helper.h" #include <cuda_helper.h>
#ifdef __INTELLISENSE__ #ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500 #define __CUDA_ARCH__ 500
@ -14,98 +14,103 @@
#define THF 4U #define THF 4U
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
#include "quark/groestl_functions_quad.h" #include "groestl_functions_quad.h"
#include "quark/groestl_transf_quad.h" #include "groestl_transf_quad.h"
#endif #endif
#include "quark/cuda_quark_groestl512_sm20.cu" #include "cuda_quark_groestl512_sm2.cuh"
__global__ __launch_bounds__(TPB, THF) __global__ __launch_bounds__(TPB, THF)
void quark_groestl512_gpu_hash_64_quad(const uint32_t threads, const uint32_t startNounce, uint32_t * g_hash, uint32_t * __restrict g_nonceVector) void quark_groestl512_gpu_hash_64_quad(const uint32_t threads, const uint32_t startNounce, uint32_t * g_hash, uint32_t * __restrict g_nonceVector)
{ {
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2; // BEWARE : 4-WAY CODE (one hash need 4 threads)
if (thread < threads) const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
{
// GROESTL if (thread < threads)
uint32_t message[8]; {
uint32_t state[8]; uint32_t message[8];
uint32_t state[8];
uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread);
off_t hashPosition = nounce - startNounce; uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread);
uint32_t *pHash = &g_hash[hashPosition << 4]; off_t hashPosition = nounce - startNounce;
uint32_t *pHash = &g_hash[hashPosition << 4];
const uint32_t thr = threadIdx.x & 0x3; // % THF
const uint32_t thr = threadIdx.x & 0x3; // % THF
#pragma unroll
for(int k=0;k<4;k++) message[k] = pHash[thr + (k * THF)]; /*| M0 M1 M2 M3 | M4 M5 M6 M7 | (input)
--|-------------|-------------|
#pragma unroll T0| 0 4 8 12 | 80 |
for(int k=4;k<8;k++) message[k] = 0; T1| 1 5 13 | |
T2| 2 6 14 | |
if (thr == 0) message[4] = 0x80U; T3| 3 7 15 | 01 |
if (thr == 3) message[7] = 0x01000000U; --|-------------|-------------| */
uint32_t msgBitsliced[8]; #pragma unroll
to_bitslice_quad(message, msgBitsliced); for(int k=0;k<4;k++) message[k] = pHash[thr + (k * THF)];
groestl512_progressMessage_quad(state, msgBitsliced); #pragma unroll
for(int k=4;k<8;k++) message[k] = 0;
// Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash
uint32_t __align__(16) hash[16]; if (thr == 0) message[4] = 0x80U; // end of data tag
from_bitslice_quad(state, hash); if (thr == 3) message[7] = 0x01000000U;
// uint4 = 4x4 uint32_t = 16 bytes uint32_t msgBitsliced[8];
if (thr == 0) { to_bitslice_quad(message, msgBitsliced);
uint4 *phash = (uint4*) hash;
uint4 *outpt = (uint4*) pHash; groestl512_progressMessage_quad(state, msgBitsliced);
outpt[0] = phash[0];
outpt[1] = phash[1]; uint32_t hash[16];
outpt[2] = phash[2]; from_bitslice_quad(state, hash);
outpt[3] = phash[3];
} // uint4 = 4x4 uint32_t = 16 bytes
} if (thr == 0) {
uint4 *phash = (uint4*) hash;
uint4 *outpt = (uint4*) pHash;
outpt[0] = phash[0];
outpt[1] = phash[1];
outpt[2] = phash[2];
outpt[3] = phash[3];
}
}
#endif #endif
} }
__host__ __host__
void quark_groestl512_cpu_init(int thr_id, uint32_t threads) void quark_groestl512_cpu_init(int thr_id, uint32_t threads)
{ {
int dev_id = device_map[thr_id]; int dev_id = device_map[thr_id];
cuda_get_arch(thr_id); cuda_get_arch(thr_id);
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300)
quark_groestl512_sm20_init(thr_id, threads); quark_groestl512_sm20_init(thr_id, threads);
} }
__host__ __host__
void quark_groestl512_cpu_free(int thr_id) void quark_groestl512_cpu_free(int thr_id)
{ {
int dev_id = device_map[thr_id]; int dev_id = device_map[thr_id];
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300)
quark_groestl512_sm20_free(thr_id); quark_groestl512_sm20_free(thr_id);
} }
__host__ __host__
void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{ {
uint32_t threadsperblock = TPB; uint32_t threadsperblock = TPB;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const uint32_t factor = THF;
// berechne wie viele Thread Blocks wir brauchen // Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); // mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
dim3 block(threadsperblock); const uint32_t factor = THF;
int dev_id = device_map[thr_id]; dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300) int dev_id = device_map[thr_id];
quark_groestl512_gpu_hash_64_quad<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
else
quark_groestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
// Strategisches Sleep Kommando zur Senkung der CPU Last if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300)
// MyStreamSynchronize(NULL, order, thr_id); quark_groestl512_gpu_hash_64_quad<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
else
quark_groestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
} }

267
quark/cuda_quark_groestl512_sm2.cuh

@ -0,0 +1,267 @@
// SM 2.x variant (tpruvot)
#ifdef __INTELLISENSE__
//#define __CUDA_ARCH__ 210
#define __CUDACC__
#include <cuda_helper.h>
#include <cuda_texture_types.h>
#define __byte_perm(a,b,c) (a)
#define tex1Dfetch(t, n) (n)
#endif
#define USE_SHARED 1
static unsigned int *d_textures[MAX_GPUS][8];
#define PC32up(j, r) ((uint32_t)((j) + (r)))
#define PC32dn(j, r) 0
#define QC32up(j, r) 0xFFFFFFFF
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
#define B32_0(x) __byte_perm(x, 0, 0x4440)
//((x) & 0xFF)
#define B32_1(x) __byte_perm(x, 0, 0x4441)
//(((x) >> 8) & 0xFF)
#define B32_2(x) __byte_perm(x, 0, 0x4442)
//(((x) >> 16) & 0xFF)
#define B32_3(x) __byte_perm(x, 0, 0x4443)
//((x) >> 24)
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
#define T0dn(x) (*((uint32_t*)mixtabs + ( 256+(x))))
#define T1up(x) (*((uint32_t*)mixtabs + ( 512+(x))))
#define T1dn(x) (*((uint32_t*)mixtabs + ( 768+(x))))
#define T2up(x) (*((uint32_t*)mixtabs + (1024+(x))))
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
#define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x))))
texture<unsigned int, 1, cudaReadModeElementType> t0up1;
texture<unsigned int, 1, cudaReadModeElementType> t0dn1;
texture<unsigned int, 1, cudaReadModeElementType> t1up1;
texture<unsigned int, 1, cudaReadModeElementType> t1dn1;
texture<unsigned int, 1, cudaReadModeElementType> t2up1;
texture<unsigned int, 1, cudaReadModeElementType> t2dn1;
texture<unsigned int, 1, cudaReadModeElementType> t3up1;
texture<unsigned int, 1, cudaReadModeElementType> t3dn1;
extern uint32_t T0up_cpu[];
extern uint32_t T0dn_cpu[];
extern uint32_t T1up_cpu[];
extern uint32_t T1dn_cpu[];
extern uint32_t T2up_cpu[];
extern uint32_t T2dn_cpu[];
extern uint32_t T3up_cpu[];
extern uint32_t T3dn_cpu[];
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
#if (!USE_SHARED)
#include "groestl_simple.cuh"
#endif
__device__ __forceinline__
void quark_groestl512_perm_P(uint32_t *a, char *mixtabs)
{
#pragma unroll 1
for(int r=0; r<14; r++)
{
uint32_t t[32];
#pragma unroll 16
for (int k=0; k<16; k++)
a[(k*2)+0] ^= PC32up(k<< 4, r);
#pragma unroll 16
for(int k=0;k<32;k+=2) {
uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]);
uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]);
uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]);
uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]);
t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^
T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 );
t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^
T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 );
}
#pragma unroll 32
for(int k=0; k<32; k++)
a[k] = t[k];
}
}
__device__ __forceinline__
void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs)
{
#pragma unroll 1
for(int r=0; r<14; r++)
{
uint32_t t[32];
#pragma unroll 16
for (int k=0; k<16; k++) {
a[(k*2)+0] ^= QC32up(k << 4, r);
a[(k*2)+1] ^= QC32dn(k << 4, r);
}
#pragma unroll 16
for(int k=0;k<32;k+=2)
{
uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]);
uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]);
uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]);
uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]);
t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^
T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 );
t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^
T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 );
}
#pragma unroll 32
for(int k=0; k<32; k++)
a[k] = t[k];
}
}
#endif
__global__
void quark_groestl512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector)
{
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
#if USE_SHARED
__shared__ char mixtabs[8 * 1024];
if (threadIdx.x < 256) {
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x);
*((uint32_t*)mixtabs + ( 256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x);
*((uint32_t*)mixtabs + ( 512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x);
*((uint32_t*)mixtabs + ( 768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x);
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x);
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x);
}
__syncthreads();
#endif
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// GROESTL
uint32_t message[32];
uint32_t state[32];
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
off_t hashPosition = nounce - startNounce;
uint32_t *pHash = &g_hash[hashPosition * 16];
#pragma unroll 4
for (int i=0; i<16; i += 4)
AS_UINT4(&message[i]) = AS_UINT4(&pHash[i]);
message[16] = 0x80U;
#pragma unroll 14
for(int i=17; i<31; i++) message[i] = 0;
message[31] = 0x01000000U;
#pragma unroll 32
for(int i=0; i<32; i++) state[i] = message[i];
state[31] ^= 0x20000U;
// Perm
#if USE_SHARED
quark_groestl512_perm_P(state, mixtabs);
state[31] ^= 0x20000U;
quark_groestl512_perm_Q(message, mixtabs);
#pragma unroll 32
for(int i=0; i<32; i++) state[i] ^= message[i];
#pragma unroll 16
for(int i=16; i<32; i++) message[i] = state[i];
quark_groestl512_perm_P(state, mixtabs);
#else
tex_groestl512_perm_P(state);
state[31] ^= 0x20000U;
tex_groestl512_perm_Q(message);
#pragma unroll 32
for(int i=0; i<32; i++) state[i] ^= message[i];
#pragma unroll 16
for(int i=16; i<32; i++) message[i] = state[i];
tex_groestl512_perm_P(state);
#endif
#pragma unroll 16
for(int i=16; i<32; i++) state[i] ^= message[i];
uint4 *outpt = (uint4*)(pHash);
uint4 *phash = (uint4*)(&state[16]);
outpt[0] = phash[0];
outpt[1] = phash[1];
outpt[2] = phash[2];
outpt[3] = phash[3];
}
#endif
}
#define texDef(id, texname, texmem, texsource, texsize) { \
unsigned int *texmem; \
cudaMalloc(&texmem, texsize); \
d_textures[thr_id][id] = texmem; \
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
texname.normalized = 0; \
texname.filterMode = cudaFilterModePoint; \
texname.addressMode[0] = cudaAddressModeClamp; \
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); \
} \
}
__host__
void quark_groestl512_sm20_init(int thr_id, uint32_t threads)
{
texDef(0, t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256);
texDef(1, t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256);
texDef(2, t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256);
texDef(3, t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256);
texDef(4, t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256);
texDef(5, t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256);
texDef(6, t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256);
texDef(7, t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256);
}
__host__
void quark_groestl512_sm20_free(int thr_id)
{
if (!d_textures[thr_id][0]) return;
for (int i=0; i<8; i++)
cudaFree(d_textures[thr_id][i]);
d_textures[thr_id][0] = NULL;
}
__host__
void quark_groestl512_sm20_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
quark_groestl512_gpu_hash_64<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
}
__host__
void quark_doublegroestl512_sm20_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
quark_groestl512_gpu_hash_64<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
quark_groestl512_gpu_hash_64<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
}

342
quark/cuda_quark_groestl512_sm20.cu

@ -1,342 +0,0 @@
// SM 2.1 variant
// #include "cuda_helper.h"
#define MAXWELL_OR_FERMI 0
#define USE_SHARED 1
static unsigned int *d_textures[MAX_GPUS][8];
// #define SPH_C32(x) ((uint32_t)(x ## U))
// #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#define PC32up(j, r) ((uint32_t)((j) + (r)))
#define PC32dn(j, r) 0
#define QC32up(j, r) 0xFFFFFFFF
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
#define B32_0(x) __byte_perm(x, 0, 0x4440)
//((x) & 0xFF)
#define B32_1(x) __byte_perm(x, 0, 0x4441)
//(((x) >> 8) & 0xFF)
#define B32_2(x) __byte_perm(x, 0, 0x4442)
//(((x) >> 16) & 0xFF)
#define B32_3(x) __byte_perm(x, 0, 0x4443)
//((x) >> 24)
// a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5!
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
#define T0dn(x) tex1Dfetch(t0dn1, x)
#define T1up(x) tex1Dfetch(t1up1, x)
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
#define T2up(x) tex1Dfetch(t2up1, x)
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
#define T3dn(x) tex1Dfetch(t3dn1, x)
texture<unsigned int, 1, cudaReadModeElementType> t0up1;
texture<unsigned int, 1, cudaReadModeElementType> t0dn1;
texture<unsigned int, 1, cudaReadModeElementType> t1up1;
texture<unsigned int, 1, cudaReadModeElementType> t1dn1;
texture<unsigned int, 1, cudaReadModeElementType> t2up1;
texture<unsigned int, 1, cudaReadModeElementType> t2dn1;
texture<unsigned int, 1, cudaReadModeElementType> t3up1;
texture<unsigned int, 1, cudaReadModeElementType> t3dn1;
extern uint32_t T0up_cpu[];
extern uint32_t T0dn_cpu[];
extern uint32_t T1up_cpu[];
extern uint32_t T1dn_cpu[];
extern uint32_t T2up_cpu[];
extern uint32_t T2dn_cpu[];
extern uint32_t T3up_cpu[];
extern uint32_t T3dn_cpu[];
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
__device__ __forceinline__
void quark_groestl512_perm_P(uint32_t *a, char *mixtabs)
{
uint32_t t[32];
for(int r=0; r<14; r++)
{
switch(r) {
case 0:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 0); break;
case 1:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 1); break;
case 2:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 2); break;
case 3:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 3); break;
case 4:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 4); break;
case 5:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 5); break;
case 6:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 6); break;
case 7:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 7); break;
case 8:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 8); break;
case 9:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 9); break;
case 10:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 10); break;
case 11:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 11); break;
case 12:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 12); break;
case 13:
#pragma unroll 16
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 13); break;
}
// RBTT
#pragma unroll 16
for(int k=0;k<32;k+=2) {
uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]);
uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]);
uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]);
uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]);
t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^
T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 );
t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^
T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 );
}
#pragma unroll 32
for(int k=0; k<32; k++) {
a[k] = t[k];
}
}
}
__device__ __forceinline__
void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs)
{
for(int r=0; r<14; r++)
{
uint32_t t[32];
switch(r) {
case 0:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 0); a[(k*2)+1] ^= QC32dn(k<< 4, 0);} break;
case 1:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 1); a[(k*2)+1] ^= QC32dn(k<< 4, 1);} break;
case 2:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 2); a[(k*2)+1] ^= QC32dn(k<< 4, 2);} break;
case 3:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 3); a[(k*2)+1] ^= QC32dn(k<< 4, 3);} break;
case 4:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 4); a[(k*2)+1] ^= QC32dn(k<< 4, 4);} break;
case 5:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 5); a[(k*2)+1] ^= QC32dn(k<< 4, 5);} break;
case 6:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 6); a[(k*2)+1] ^= QC32dn(k<< 4, 6);} break;
case 7:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 7); a[(k*2)+1] ^= QC32dn(k<< 4, 7);} break;
case 8:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 8); a[(k*2)+1] ^= QC32dn(k<< 4, 8);} break;
case 9:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 9); a[(k*2)+1] ^= QC32dn(k<< 4, 9);} break;
case 10:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 10); a[(k*2)+1] ^= QC32dn(k<< 4, 10);} break;
case 11:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 11); a[(k*2)+1] ^= QC32dn(k<< 4, 11);} break;
case 12:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 12); a[(k*2)+1] ^= QC32dn(k<< 4, 12);} break;
case 13:
#pragma unroll 16
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 13); a[(k*2)+1] ^= QC32dn(k<< 4, 13);} break;
}
// RBTT
#pragma unroll 16
for(int k=0;k<32;k+=2)
{
uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]);
uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]);
uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]);
uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]);
t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^
T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 );
t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^
T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 );
}
#pragma unroll 32
for(int k=0;k<32;k++)
a[k] = t[k];
}
}
#endif
__global__
void quark_groestl512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector)
{
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
extern __shared__ char mixtabs[];
if (threadIdx.x < 256)
{
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x);
*((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x);
*((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x);
*((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x);
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x);
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x);
}
__syncthreads();
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// GROESTL
uint32_t message[32];
uint32_t state[32];
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
off_t hashPosition = nounce - startNounce;
uint32_t *inpHash = &g_hash[hashPosition * 16];
#pragma unroll 16
for(int k=0; k<16; k++)
message[k] = inpHash[k];
#pragma unroll 14
for(int k=1; k<15; k++)
message[k+16] = 0;
message[16] = 0x80;
message[31] = 0x01000000;
#pragma unroll 32
for(int u=0; u<32; u++)
state[u] = message[u];
state[31] ^= 0x20000;
// Perm
quark_groestl512_perm_P(state, mixtabs);
state[31] ^= 0x20000;
quark_groestl512_perm_Q(message, mixtabs);
#pragma unroll 32
for(int u=0;u<32;u++) state[u] ^= message[u];
#pragma unroll 32
for(int u=0;u<32;u++) message[u] = state[u];
quark_groestl512_perm_P(message, mixtabs);
#pragma unroll 32
for(int u=0;u<32;u++) state[u] ^= message[u];
// Erzeugten Hash rausschreiben
uint32_t *outpHash = &g_hash[hashPosition * 16];
#pragma unroll 16
for(int k=0;k<16;k++) outpHash[k] = state[k+16];
}
#endif
}
#define texDef(id, texname, texmem, texsource, texsize) { \
unsigned int *texmem; \
cudaMalloc(&texmem, texsize); \
d_textures[thr_id][id] = texmem; \
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
texname.normalized = 0; \
texname.filterMode = cudaFilterModePoint; \
texname.addressMode[0] = cudaAddressModeClamp; \
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); \
} \
}
__host__
void quark_groestl512_sm20_init(int thr_id, uint32_t threads)
{
// Texturen mit obigem Makro initialisieren
texDef(0, t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256);
texDef(1, t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256);
texDef(2, t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256);
texDef(3, t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256);
texDef(4, t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256);
texDef(5, t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256);
texDef(6, t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256);
texDef(7, t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256);
}
__host__
void quark_groestl512_sm20_free(int thr_id)
{
for (int i=0; i<8; i++)
cudaFree(d_textures[thr_id][i]);
}
__host__
void quark_groestl512_sm20_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 8 * 256 * sizeof(uint32_t);
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
// MyStreamSynchronize(NULL, order, thr_id);
}
__host__
void quark_doublegroestl512_sm20_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
int threadsperblock = 512;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 8 * 256 * sizeof(uint32_t);
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector);
// MyStreamSynchronize(NULL, order, thr_id);
}

111
quark/groestl_simple.cuh

@ -0,0 +1,111 @@
/**
* Simplified groestl512 big perm code
* tpruvot - 2017
*/
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 210
#define __CUDACC__
#include <cuda_helper.h>
#include <cuda_texture_types.h>
#define __byte_perm(a,b,c) (a)
#define tex1Dfetch(t, n) (n)
#endif
// todo: merge with cuda_quark_groestl512_sm20.cu (used for groestl512-80)
#if __CUDA_ARCH__ < 300 || defined(_DEBUG)
#ifndef SPH_C32
#define SPH_C32(x) ((uint32_t)(x ## U))
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#endif
#ifndef PC32up
#define PC32up(j, r) ((uint32_t)((j) + (r)))
#define PC32dn(j, r) 0
#define QC32up(j, r) 0xFFFFFFFF
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
#endif
#define tT0up(x) tex1Dfetch(t0up1, x)
#define tT0dn(x) tex1Dfetch(t0dn1, x)
#define tT1up(x) tex1Dfetch(t1up1, x)
#define tT1dn(x) tex1Dfetch(t1dn1, x)
#define tT2up(x) tex1Dfetch(t2up1, x)
#define tT2dn(x) tex1Dfetch(t2dn1, x)
#define tT3up(x) tex1Dfetch(t3up1, x)
#define tT3dn(x) tex1Dfetch(t3dn1, x)
#undef B32_0
#define B32_0(x) ((x) & 0xFFu)
__device__ __forceinline__
static void tex_groestl512_perm_P(uint32_t *a)
{
#pragma unroll 1
for(int r=0; r<14; r++)
{
uint32_t t[32];
#pragma unroll 16
for (int k=0; k<16; k++)
a[(k*2)+0] ^= PC32up(k<< 4, r);
#pragma unroll 16
for(int k=0; k<32; k+=2)
{
uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]);
uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]);
uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]);
uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]);
t[k + 0] = tT0up( t0_0 ) ^ tT1up( t2_1 ) ^ tT2up( t4_2 ) ^ tT3up( t6_3 ) ^
tT0dn( t9_0 ) ^ tT1dn( t11_1 ) ^ tT2dn( t13_2 ) ^ tT3dn( t23_3 );
t[k + 1] = tT0dn( t0_0 ) ^ tT1dn( t2_1 ) ^ tT2dn( t4_2 ) ^ tT3dn( t6_3 ) ^
tT0up( t9_0 ) ^ tT1up( t11_1 ) ^ tT2up( t13_2 ) ^ tT3up( t23_3 );
}
#pragma unroll 32
for(int k=0; k<32; k++)
a[k] = t[k];
}
}
__device__ __forceinline__
static void tex_groestl512_perm_Q(uint32_t *a)
{
#pragma unroll 1
for(int r=0; r<14; r++)
{
uint32_t t[32];
#pragma unroll 16
for (int k=0; k<16; k++) {
a[(k*2)+0] ^= QC32up(k<< 4, r);
a[(k*2)+1] ^= QC32dn(k<< 4, r);
}
#pragma unroll 16
for(int k=0; k<32; k+=2)
{
uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]);
uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]);
uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]);
uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]);
t[k + 0] = tT0up( t2_0 ) ^ tT1up( t6_1 ) ^ tT2up( t10_2 ) ^ tT3up( t22_3 ) ^
tT0dn( t1_0 ) ^ tT1dn( t5_1 ) ^ tT2dn( t9_2 ) ^ tT3dn( t13_3 );
t[k + 1] = tT0dn( t2_0 ) ^ tT1dn( t6_1 ) ^ tT2dn( t10_2 ) ^ tT3dn( t22_3 ) ^
tT0up( t1_0 ) ^ tT1up( t5_1 ) ^ tT2up( t9_2 ) ^ tT3up( t13_3 );
}
#pragma unroll 32
for(int k=0; k<32; k++)
a[k] = t[k];
}
}
#endif
Loading…
Cancel
Save