1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-23 13:04:13 +00:00

x15: use djm34 code with asm xor64 + my rot64

some optimizations could be done later, after whirlcoin integration
This commit is contained in:
Tanguy Pruvot 2014-08-20 05:44:02 +02:00
parent 194fda87c1
commit 4bc23048b5
3 changed files with 1799 additions and 201 deletions

View File

@ -113,9 +113,135 @@ __device__ __forceinline__ uint64_t cuda_swab64(uint64_t x)
(((uint64_t)(x) & 0x00000000000000ffULL) << 56))) (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
#endif #endif
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt /*********************************************************************/
#if __CUDA_ARCH__ >= 350 // Macro to catch CUDA errors in CUDA runtime calls
__device__ __forceinline__ uint64_t ROTR64(const uint64_t value, const int offset) { #define CUDA_SAFE_CALL(call) \
do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
/*********************************************************************/
// device asm for whirpool
__device__ __forceinline__
uint64_t xor1(uint64_t a, uint64_t b)
{
uint64_t result;
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(a) ,"l"(b));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t xor3(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
" .reg .u64 t1;\n\t"
"xor.b64 t1, %2, %3;\n\t"
"xor.b64 %0, %1, t1;\n\t"
"}"
: "=l"(result) : "l"(a) ,"l"(b),"l"(c));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t xor8(uint64_t a, uint64_t b, uint64_t c, uint64_t d,uint64_t e,uint64_t f,uint64_t g, uint64_t h)
{
uint64_t result;
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(g) ,"l"(h));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(f));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(e));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(d));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t xandx(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n;\n\t"
"xor.b64 m, %2,%3;\n\t"
"and.b64 n, m,%1;\n\t"
"xor.b64 %0, n,%3;\n\t"
"}\n\t"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t sph_t64(uint64_t x)
{
uint64_t result;
asm("{\n\t"
"and.b64 %0,%1,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t"
: "=l"(result) : "l"(x));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t andor(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n,o;\n\t"
"and.b64 m, %1, %2;\n\t"
" or.b64 n, %1, %2;\n\t"
"and.b64 o, n, %3;\n\t"
" or.b64 %0, m, o ;\n\t"
"}\n\t"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t shr_t64(uint64_t x, uint32_t n)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m;\n\t"
"shr.b64 m,%1,%2;\n\t"
"and.b64 %0,m,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(n));
return result;
}
// device asm for whirpool
__device__ __forceinline__
uint64_t shl_t64(uint64_t x, uint32_t n)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m;\n\t"
"shl.b64 m,%1,%2;\n\t"
"and.b64 %0,m,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(n));
return result;
}
// 64-bit ROTATE RIGHT
#ifdef DJM_SM35_ROT64
/* complicated sm >= 3.5 one (with Funnel Shifter beschleunigt), to bench */
__device__ __forceinline__
uint64_t ROTR64(const uint64_t value, const int offset) {
uint2 result; uint2 result;
if(offset < 32) { if(offset < 32) {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
@ -126,13 +252,32 @@ __device__ __forceinline__ uint64_t ROTR64(const uint64_t value, const int offse
} }
return __double_as_longlong(__hiloint2double(result.y, result.x)); return __double_as_longlong(__hiloint2double(result.y, result.x));
} }
#elif __CUDA_ARCH__ >= 120
__device__ __forceinline__
uint64_t ROTR64(const uint64_t x, const int offset)
{
uint64_t result;
asm("{\n\t"
".reg .b64 lhs, rhs;\n\t"
".reg .u32 amt2;\n\t"
"shr.b64 lhs, %1, %2;\n\t"
"sub.u32 amt2, 64, %2;\n\t"
"shl.b64 rhs, %1, amt2;\n\t"
"add.u64 %0, lhs, rhs;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(offset));
return result;
}
#else #else
#define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n)))) /* host */
#define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif #endif
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt // 64-bit ROTATE LEFT
#if __CUDA_ARCH__ >= 350 #ifdef DJM_SM35_ROT64
__device__ __forceinline__ uint64_t ROTL64(const uint64_t value, const int offset) { /* complicated sm >= 3.5 one, to bench */
__device__ __forceinline__
uint64_t ROTL64(const uint64_t value, const int offset) {
uint2 result; uint2 result;
if(offset >= 32) { if(offset >= 32) {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
@ -143,19 +288,25 @@ __device__ __forceinline__ uint64_t ROTL64(const uint64_t value, const int offse
} }
return __double_as_longlong(__hiloint2double(result.y, result.x)); return __double_as_longlong(__hiloint2double(result.y, result.x));
} }
#elif __CUDA_ARCH__ >= 120
__device__ __forceinline__
uint64_t ROTL64(const uint64_t x, const int offset)
{
uint64_t result;
asm("{\n\t"
".reg .b64 lhs, rhs;\n\t"
".reg .u32 amt2;\n\t"
"shl.b64 lhs, %1, %2;\n\t"
"sub.u32 amt2, 64, %2;\n\t"
"shr.b64 rhs, %1, amt2;\n\t"
"add.u64 %0, lhs, rhs;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(offset));
return result;
}
#else #else
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) /* host */
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#endif #endif
// Macro to catch CUDA errors in CUDA runtime calls
#define CUDA_SAFE_CALL(call) \
do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
#endif // #ifndef CUDA_HELPER_H #endif // #ifndef CUDA_HELPER_H

File diff suppressed because it is too large Load Diff

View File

@ -80,8 +80,9 @@ extern void x13_fugue512_cpu_hash_64(int thr_id, int threads, uint32_t startNoun
extern void x14_shabal512_cpu_init(int thr_id, int threads); extern void x14_shabal512_cpu_init(int thr_id, int threads);
extern void x14_shabal512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void x14_shabal512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x15_whirlpool_cpu_init(int thr_id, int threads); extern void x15_whirlpool_cpu_init(int thr_id, int threads, int mode);
extern void x15_whirlpool_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void x15_whirlpool_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void x15_whirlpool_cpu_free(int thr_id);
extern void cuda_check_cpu_init(int thr_id, int threads); extern void cuda_check_cpu_init(int thr_id, int threads);
extern void cuda_check_cpu_setTarget(const void *ptarget); extern void cuda_check_cpu_setTarget(const void *ptarget);
@ -228,7 +229,7 @@ extern "C" int scanhash_x15(int thr_id, uint32_t *pdata,
x13_hamsi512_cpu_init(thr_id, throughput); x13_hamsi512_cpu_init(thr_id, throughput);
x13_fugue512_cpu_init(thr_id, throughput); x13_fugue512_cpu_init(thr_id, throughput);
x14_shabal512_cpu_init(thr_id, throughput); x14_shabal512_cpu_init(thr_id, throughput);
x15_whirlpool_cpu_init(thr_id, throughput); x15_whirlpool_cpu_init(thr_id, throughput, 0);
cuda_check_cpu_init(thr_id, throughput); cuda_check_cpu_init(thr_id, throughput);
init[thr_id] = true; init[thr_id] = true;
@ -276,6 +277,7 @@ extern "C" int scanhash_x15(int thr_id, uint32_t *pdata,
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) {
pdata[19] = foundNonce; pdata[19] = foundNonce;
*hashes_done = foundNonce - first_nonce + 1; *hashes_done = foundNonce - first_nonce + 1;
x15_whirlpool_cpu_free(thr_id);
return 1; return 1;
} }
else if (vhash64[7] > Htarg) { else if (vhash64[7] > Htarg) {
@ -291,5 +293,7 @@ extern "C" int scanhash_x15(int thr_id, uint32_t *pdata,
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); } while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce + 1; *hashes_done = pdata[19] - first_nonce + 1;
x15_whirlpool_cpu_free(thr_id);
return 0; return 0;
} }