Browse Source

lyra2v2: add support for SM 2.1 devices

and improve a bit SM 3 perf
2upstream
Tanguy Pruvot 9 years ago
parent
commit
41543b5c0b
  1. 1
      bench.cpp
  2. 12
      lyra2/cuda_lyra2_vectors.h
  3. 9
      lyra2/cuda_lyra2v2.cu
  4. 94
      lyra2/cuda_lyra2v2_sm3.cuh
  5. 29
      lyra2/lyra2REv2.cu

1
bench.cpp

@ -103,7 +103,6 @@ bool bench_algo_switch_next(int thr_id) @@ -103,7 +103,6 @@ bool bench_algo_switch_next(int thr_id)
if (algo == ALGO_GROESTL) algo++;
if (algo == ALGO_MYR_GR) algo++;
if (algo == ALGO_JACKPOT) algo++; // compact shuffle
if (algo == ALGO_LYRA2v2) algo++;
if (algo == ALGO_NEOSCRYPT) algo++;
if (algo == ALGO_WHIRLPOOLX) algo++;
}

12
lyra2/cuda_lyra2_vectors.h

@ -12,6 +12,10 @@ @@ -12,6 +12,10 @@
#include "cuda_helper.h"
#if __CUDA_ARCH__ < 300
#define __shfl(x, y) (x)
#endif
#if __CUDA_ARCH__ < 320 && !defined(__ldg4)
#define __ldg4(x) (*(x))
#endif
@ -545,6 +549,7 @@ static __forceinline__ __device__ uint16 swapvec(const uint16 &buf) @@ -545,6 +549,7 @@ static __forceinline__ __device__ uint16 swapvec(const uint16 &buf)
static __device__ __forceinline__ uint28 shuffle4(const uint28 &var, int lane)
{
#if __CUDA_ARCH__ >= 300
uint28 res;
res.x.x = __shfl(var.x.x, lane);
res.x.y = __shfl(var.x.y, lane);
@ -555,10 +560,14 @@ static __device__ __forceinline__ uint28 shuffle4(const uint28 &var, int lane) @@ -555,10 +560,14 @@ static __device__ __forceinline__ uint28 shuffle4(const uint28 &var, int lane)
res.w.x = __shfl(var.w.x, lane);
res.w.y = __shfl(var.w.y, lane);
return res;
#else
return var;
#endif
}
static __device__ __forceinline__ ulonglong4 shuffle4(ulonglong4 var, int lane)
{
#if __CUDA_ARCH__ >= 300
ulonglong4 res;
uint2 temp;
temp = vectorize(var.x);
@ -578,6 +587,9 @@ static __device__ __forceinline__ ulonglong4 shuffle4(ulonglong4 var, int lane) @@ -578,6 +587,9 @@ static __device__ __forceinline__ ulonglong4 shuffle4(ulonglong4 var, int lane)
temp.y = __shfl(temp.y, lane);
res.w = devectorize(temp);
return res;
#else
return var;
#endif
}
#endif // #ifndef CUDA_LYRA_VECTOR_H

9
lyra2/cuda_lyra2v2.cu

@ -342,7 +342,7 @@ void lyra2v2_gpu_hash_32(const uint32_t threads, uint32_t startNounce, uint2 *g_ @@ -342,7 +342,7 @@ void lyra2v2_gpu_hash_32(const uint32_t threads, uint32_t startNounce, uint2 *g_
}
#else
#include "cuda_helper.h"
#if __CUDA_ARCH__ < 300
#if __CUDA_ARCH__ < 200
__device__ void* DMatrix;
#endif
__global__ void lyra2v2_gpu_hash_32(const uint32_t threads, uint32_t startNounce, uint2 *g_hash) {}
@ -362,9 +362,10 @@ void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uin @@ -362,9 +362,10 @@ void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uin
int dev_id = device_map[thr_id % MAX_GPUS];
uint32_t tpb = TPB52;
if (device_sm[dev_id] == 500 || cuda_arch[dev_id] == 500) tpb = TPB50;
else if (device_sm[dev_id] == 350 || cuda_arch[dev_id] == 350) tpb = TPB35;
else if (device_sm[dev_id] < 350 || cuda_arch[dev_id] < 350) tpb = TPB30;
if (cuda_arch[dev_id] == 500) tpb = TPB50;
else if (cuda_arch[dev_id] >= 350) tpb = TPB35;
else if (cuda_arch[dev_id] >= 300) tpb = TPB30;
else if (cuda_arch[dev_id] >= 200) tpb = TPB20;
dim3 grid((threads + tpb - 1) / tpb);
dim3 block(tpb);

94
lyra2/cuda_lyra2v2_sm3.cuh

@ -1,4 +1,4 @@ @@ -1,4 +1,4 @@
/* SM 3/3.5 Variant for lyra2REv2 */
/* SM 2/3/3.5 Variant for lyra2REv2 */
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
@ -6,10 +6,11 @@ @@ -6,10 +6,11 @@
#define __CUDA_ARCH__ 350
#endif
#define TPB30 16
#define TPB20 64
#define TPB30 64
#define TPB35 64
#if __CUDA_ARCH__ >= 300 && __CUDA_ARCH__ < 500
#if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ < 500
#include "cuda_lyra2_vectors.h"
@ -165,6 +166,7 @@ void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, v @@ -165,6 +166,7 @@ void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, v
}
}
#if __CUDA_ARCH__ >= 300
__global__ __launch_bounds__(TPB35, 1)
void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
@ -194,6 +196,7 @@ void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outpu @@ -194,6 +196,7 @@ void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outpu
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
state[1] = state[0];
state[2] = shuffle4(((vectype*)blake2b_IV)[0], 0);
state[3] = shuffle4(((vectype*)blake2b_IV)[1], 0);
@ -246,9 +249,90 @@ void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outpu @@ -246,9 +249,90 @@ void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outpu
} //thread
}
#elif __CUDA_ARCH__ >= 200
__global__ __launch_bounds__(TPB20, 1)
void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
vectype blake2b_IV[2];
vectype padding[2];
((uint16*)blake2b_IV)[0] = make_uint16(
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85,
0xfe94f82b, 0x3c6ef372, 0x5f1d36f1, 0xa54ff53a,
0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c,
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19
);
((uint16*)padding)[0] = make_uint16(
0x20, 0x0, 0x20, 0x0, 0x20, 0x0, 0x01, 0x0,
0x04, 0x0, 0x04, 0x0, 0x80, 0x0, 0x0, 0x01000000
);
if (thread < threads)
{
((uint2*)state)[0] = outputHash[thread];
((uint2*)state)[1] = outputHash[thread + threads];
((uint2*)state)[2] = outputHash[thread + 2 * threads];
((uint2*)state)[3] = outputHash[thread + 3 * threads];
state[1] = state[0];
state[2] = ((vectype*)blake2b_IV)[0];
state[3] = ((vectype*)blake2b_IV)[1];
for (int i = 0; i<12; i++)
round_lyra_v35(state);
state[0] ^= ((vectype*)padding)[0];
state[1] ^= ((vectype*)padding)[1];
for (int i = 0; i<12; i++)
round_lyra_v35(state);
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread);
//#pragma unroll 4
for (int i = 0; i < 4; i++)
{
uint32_t s1 = ps1 - 4 * memshift * i;
for (int j = 0; j < 3; j++)
(DMatrix + s1)[j] = (state)[j];
round_lyra_v35(state);
}
reduceDuplexV3(state, thread);
reduceDuplexRowSetupV3(1, 0, 2, state, thread);
reduceDuplexRowSetupV3(2, 1, 3, state, thread);
uint32_t rowa;
int prev = 3;
for (int i = 0; i < 4; i++)
{
rowa = ((uint2*)state)[0].x & 3; reduceDuplexRowtV3(prev, rowa, i, state, thread);
prev = i;
}
uint32_t shift = (memshift * rowa + 16 * memshift * thread);
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v35(state);
outputHash[thread] = ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
} //thread
}
#endif
#else
/* if __CUDA_ARCH__ < 300 .. */
/* host & sm5+ */
__global__ void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) {}
#endif

29
lyra2/lyra2REv2.cu

@ -73,6 +73,21 @@ void lyra2v2_hash(void *state, const void *input) @@ -73,6 +73,21 @@ void lyra2v2_hash(void *state, const void *input)
memcpy(state, hashA, 32);
}
#ifdef _DEBUG
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 32); \
cudaMemcpy(debugbuf, d_hash[thr_id], 32, cudaMemcpyDeviceToHost); \
printf("lyra2 %s %08x %08x %08x %08x...%08x... \n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3]), swab32(debugbuf[7])); \
cudaFreeHost(debugbuf); \
} \
}
#else
#define TRACE(algo) {}
#endif
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
@ -113,12 +128,6 @@ extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonc @@ -113,12 +128,6 @@ extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonc
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput));
if (device_sm[dev_id] < 300) {
gpulog(LOG_ERR, thr_id, "Device SM 3.0 or more recent required!");
proper_exit(1);
return -1;
}
api_set_throughput(thr_id, throughput);
init[thr_id] = true;
}
@ -135,11 +144,17 @@ extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonc @@ -135,11 +144,17 @@ extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonc
uint32_t foundNonces[2] = { 0, 0 };
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("blake :");
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("keccak :");
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("cube :");
lyra2v2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("lyra2 :");
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("skein :");
cubehash256_cpu_hash_32(thr_id, throughput,pdata[19], d_hash[thr_id], order++);
TRACE("cube :");
bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], foundNonces);
@ -181,7 +196,7 @@ extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonc @@ -181,7 +196,7 @@ extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonc
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
} while (!work_restart[thr_id].restart && !abort_flag);
*hashes_done = pdata[19] - first_nonce;
return 0;

Loading…
Cancel
Save