1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-22 12:34:17 +00:00

x15: optimize the algo

This commit is contained in:
Tanguy Pruvot 2014-08-15 00:29:24 +02:00
parent 17e10400a4
commit 35c0eb5512
2 changed files with 64 additions and 108 deletions

View File

@ -354,14 +354,14 @@ static const uint32_t C_init_384[] = {
};
#endif
__device__
__device__ __constant__
static const uint32_t d_A512[] = {
C32(0x20728DFD), C32(0x46C0BD53), C32(0xE782B699), C32(0x55304632),
C32(0x71B4EF90), C32(0x0EA9E82C), C32(0xDBB930F1), C32(0xFAD06B8B),
C32(0xBE0CAE40), C32(0x8BD14410), C32(0x76D2ADAC), C32(0x28ACAB7F)
};
__device__
__device__ __constant__
static const uint32_t d_B512[] = {
C32(0xC1099CB7), C32(0x07B385F3), C32(0xE7442C26), C32(0xCC8AD640),
C32(0xEB6F56C7), C32(0x1EA81AA9), C32(0x73B9D314), C32(0x1DE85D08),
@ -369,7 +369,7 @@ static const uint32_t d_B512[] = {
C32(0x72D2F240), C32(0x75941D99), C32(0x6D8BDE82), C32(0xA1A7502B)
};
__device__
__device__ __constant__
static const uint32_t d_C512[] = {
C32(0xD9BF68D1), C32(0x58BAD750), C32(0x56028CB2), C32(0x8134F359),
C32(0xB5D469D8), C32(0x941A8CC2), C32(0x418B2A6E), C32(0x04052780),
@ -474,10 +474,11 @@ __global__ void x14_shabal512_gpu_hash_64(int threads, uint32_t startNounce, uin
__host__ void x14_shabal512_cpu_init(int thr_id, int threads)
{
}
#include <stdio.h>
// #include <stdio.h>
__host__ void x14_shabal512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 192;
const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);

View File

@ -19,21 +19,6 @@ extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int t
#define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF))
#define SPH_ROTL64(x, n) SPH_T64(((x) << (n)) | ((x) >> (64 - (n))))
#define SPH_ROTR64(x, n) SPH_ROTL64(x, (64 - (n)))
#if 0
static __constant__ uint64_t d_plain_T0[256];
#if !SPH_SMALL_FOOTPRINT_WHIRLPOOL
static __constant__ uint64_t d_plain_T1[256];
static __constant__ uint64_t d_plain_T2[256];
static __constant__ uint64_t d_plain_T3[256];
static __constant__ uint64_t d_plain_T4[256];
static __constant__ uint64_t d_plain_T5[256];
static __constant__ uint64_t d_plain_T6[256];
static __constant__ uint64_t d_plain_T7[256];
#endif
static __constant__ uint64_t d_plain_RC[10];
#endif
/* $Id: whirlpool.c 227 2010-06-16 17:28:38Z tp $ */
/*
@ -47,9 +32,9 @@ static __constant__ uint64_t d_plain_RC[10];
*
* The most common big-endian architecture is Sparc, and Ultrasparc CPU
* include special opcodes to perform little-endian accesses, which we use
* (see sph_types.h). Most modern CPU designs can work with both endianness
* (see sph_types.h). Most modern CPU designs can work with both endian.ss
* and architecture designer now favour little-endian (basically, x86 has
* won the endianness war).
* won the endian.ss war).
*
* TODO: implement a 32-bit version. Not only such a version would be handy
* for non-64-bit-able architectures, but it may also use smaller tables,
@ -89,7 +74,7 @@ static __constant__ uint64_t d_plain_RC[10];
/*
* Constants for plain WHIRLPOOL (current version).
*/
__device__ static const uint64_t plain_T0[256] = {
__device__ __constant__ static const uint64_t plain_T0[256] = {
SPH_C64(0xD83078C018601818), SPH_C64(0x2646AF05238C2323),
SPH_C64(0xB891F97EC63FC6C6), SPH_C64(0xFBCD6F13E887E8E8),
SPH_C64(0xCB13A14C87268787), SPH_C64(0x116D62A9B8DAB8B8),
@ -1144,7 +1129,7 @@ __device__ static const uint64_t plain_T7[256] = {
/*
* Round constants.
*/
__device__ static const uint64_t plain_RC[10] = {
__device__ __constant__ static const uint64_t plain_RC[10] = {
SPH_C64(0x4F01B887E8C62318),
SPH_C64(0x52916F79F5D2A636),
SPH_C64(0x357B0CA38E9BBC60),
@ -1197,13 +1182,6 @@ __device__ static uint64_t table_skew(uint64_t val, int num) {
out ## 7 = ROUND_ELT(table, in, 7, 6, 5, 4, 3, 2, 1, 0) ^ c7; \
} while (0)
#define ROUND_KSCHED(table, in, out, c) \
ROUND(table, in, out, c, 0, 0, 0, 0, 0, 0, 0)
#define ROUND_WENC(table, in, key, out) \
ROUND(table, in, out, key ## 0, key ## 1, key ## 2, \
key ## 3, key ## 4, key ## 5, key ## 6, key ## 7)
#define TRANSFER(dst, src) do { \
dst ## 0 = src ## 0; \
dst ## 1 = src ## 1; \
@ -1215,8 +1193,22 @@ __device__ static uint64_t table_skew(uint64_t val, int num) {
dst ## 7 = src ## 7; \
} while (0)
#define ROUND_KSCHED(table, in, out, c) \
ROUND(table, in, out, c, 0, 0, 0, 0, 0, 0, 0); \
TRANSFER(in, out)
#define ROUND_WENC(table, in, key, out) \
ROUND(table, in, out, key ## 0, key ## 1, key ## 2, \
key ## 3, key ## 4, key ## 5, key ## 6, key ## 7); \
TRANSFER(in, out)
#endif
struct h8x64
{
uint64_t n0, n1, n2, n3, n4, n5, n6, n7;
};
/***************************************************/
// GPU Hash Function
__global__ void x15_whirlpool_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
@ -1229,95 +1221,58 @@ __global__ void x15_whirlpool_gpu_hash_64(int threads, uint32_t startNounce, uin
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
uint32_t hashPosition = nounce - startNounce;
uint64_t *pHash = &g_hash[hashPosition<<3];
// whirlpool
uint64_t n0, n1, n2, n3, n4, n5, n6, n7;
uint64_t h0=0, h1=0, h2=0, h3=0, h4=0, h5=0, h6=0, h7=0;
uint64_t state[8];
struct h8x64 *phash = (struct h8x64 *) &g_hash[hashPosition<<3];
struct h8x64 p = *phash; /* copy content in local p */
struct h8x64 st, n, h = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t u;
#if NULLTEST
for (uint8_t i = 0; i < 8; i++)
pHash[i] = 0;
p = h;
#endif
n0 = pHash[0];
n1 = pHash[1];
n2 = pHash[2];
n3 = pHash[3];
n4 = pHash[4];
n5 = pHash[5];
n6 = pHash[6];
n7 = pHash[7];
TRANSFER(n.n, p.n);
n0 ^= h0;
n1 ^= h1;
n2 ^= h2;
n3 ^= h3;
n4 ^= h4;
n5 ^= h5;
n6 ^= h6;
n7 ^= h7;
#pragma unroll 10
for (uint8_t r = 0; r < 10; r++)
#pragma unroll 10
for (u = 0; u < 10; u++)
{
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(plain_T, h, tmp, plain_RC[r]);
TRANSFER(h, tmp);
ROUND_WENC(plain_T, n, h, tmp);
TRANSFER(n, tmp);
uint64_t t0, t1, t2, t3, t4, t5, t6, t7;
ROUND_KSCHED(plain_T, h.n, t, plain_RC[u]);
ROUND_WENC(plain_T, n.n, h.n, t);
}
state[0] = n0 ^ pHash[0];
state[1] = n1 ^ pHash[1];
state[2] = n2 ^ pHash[2];
state[3] = n3 ^ pHash[3];
state[4] = n4 ^ pHash[4];
state[5] = n5 ^ pHash[5];
state[6] = n6 ^ pHash[6];
state[7] = n7 ^ pHash[7];
h.n0 = st.n0 = n.n0 ^ p.n0;
h.n1 = st.n1 = n.n1 ^ p.n1;
h.n2 = st.n2 = n.n2 ^ p.n2;
h.n3 = st.n3 = n.n3 ^ p.n3;
h.n4 = st.n4 = n.n4 ^ p.n4;
h.n5 = st.n5 = n.n5 ^ p.n5;
h.n6 = st.n6 = n.n6 ^ p.n6;
h.n7 = st.n7 = n.n7 ^ p.n7;
n0 = 0x80;
n1 = n2 = n3 = n4 = n5 = n6 = 0;
n7 = 0x2000000000000;
n.n0 = st.n0 ^ 0x80;
n.n1 = st.n1;
n.n2 = st.n2;
n.n3 = st.n3;
n.n4 = st.n4;
n.n5 = st.n5;
n.n6 = st.n6;
n.n7 = st.n7 ^ 0x2000000000000;
h0 = state[0];
h1 = state[1];
h2 = state[2];
h3 = state[3];
h4 = state[4];
h5 = state[5];
h6 = state[6];
h7 = state[7];
n0 ^= h0;
n1 ^= h1;
n2 ^= h2;
n3 ^= h3;
n4 ^= h4;
n5 ^= h5;
n6 ^= h6;
n7 ^= h7;
#pragma unroll 10
for (uint8_t r = 0; r < 10; r++)
#pragma unroll 10
for (u = 0; u < 10; u++)
{
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(plain_T, h, tmp, plain_RC[r]);
TRANSFER(h, tmp);
ROUND_WENC(plain_T, n, h, tmp);
TRANSFER(n, tmp);
uint64_t t0, t1, t2, t3, t4, t5, t6, t7;
ROUND_KSCHED(plain_T, h.n, t, plain_RC[u]);
ROUND_WENC(plain_T, n.n, h.n, t);
}
pHash[0] = state[0] ^ (n0 ^ 0x80);
pHash[1] = state[1] ^ n1;
pHash[2] = state[2] ^ n2;
pHash[3] = state[3] ^ n3;
pHash[4] = state[4] ^ n4;
pHash[5] = state[5] ^ n5;
pHash[6] = state[6] ^ n6;
pHash[7] = state[7] ^ (n7 ^ 0x2000000000000);
phash->n0 = st.n0 ^ (n.n0 ^ 0x80);
phash->n1 = st.n1 ^ n.n1;
phash->n2 = st.n2 ^ n.n2;
phash->n3 = st.n3 ^ n.n3;
phash->n4 = st.n4 ^ n.n4;
phash->n5 = st.n5 ^ n.n5;
phash->n6 = st.n6 ^ n.n6;
phash->n7 = st.n7 ^ (n.n7 ^ 0x2000000000000);
}
}