1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-11 07:17:53 +00:00

keccak uint2 optimisation for SM>3.0 (x11 +40KH/s)

based on djm34 keccak 256-bit changes, and keep SM3.0 compat

affect most other algos too (quark, nist5, x13...)
This commit is contained in:
Tanguy Pruvot 2014-12-15 11:19:10 +01:00
parent fa7d744a6c
commit 2585e10814

View File

@ -24,15 +24,110 @@ static const uint64_t host_keccak_round_constants[24] = {
0x0000000080000001ull, 0x8000000080008008ull 0x0000000080000001ull, 0x8000000080008008ull
}; };
__constant__ uint64_t c_keccak_round_constants[24]; __constant__ uint64_t d_keccak_round_constants[24];
static __device__ __forceinline__ void __device__ __forceinline__
keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_constants) { static void keccak_block(uint2 *s)
{
size_t i;
uint2 t[5], u[5], v, w;
for (i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
u[0] = t[4] ^ ROL2(t[1], 1);
u[1] = t[0] ^ ROL2(t[2], 1);
u[2] = t[1] ^ ROL2(t[3], 1);
u[3] = t[2] ^ ROL2(t[4], 1);
u[4] = t[3] ^ ROL2(t[0], 1);
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
/* rho pi: b[..] = rotl(a[..], ..) */
v = s[1];
s[1] = ROL2(s[6], 44);
s[6] = ROL2(s[9], 20);
s[9] = ROL2(s[22], 61);
s[22] = ROL2(s[14], 39);
s[14] = ROL2(s[20], 18);
s[20] = ROL2(s[2], 62);
s[2] = ROL2(s[12], 43);
s[12] = ROL2(s[13], 25);
s[13] = ROL2(s[19], 8);
s[19] = ROL2(s[23], 56);
s[23] = ROL2(s[15], 41);
s[15] = ROL2(s[4], 27);
s[4] = ROL2(s[24], 14);
s[24] = ROL2(s[21], 2);
s[21] = ROL2(s[8], 55);
s[8] = ROL2(s[16], 45);
s[16] = ROL2(s[5], 36);
s[5] = ROL2(s[3], 28);
s[3] = ROL2(s[18], 21);
s[18] = ROL2(s[17], 15);
s[17] = ROL2(s[11], 10);
s[11] = ROL2(s[7], 6);
s[7] = ROL2(s[10], 3);
s[10] = ROL2(v, 1);
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
v = s[0]; w = s[1]; s[0] ^= (~w) & s[2]; s[1] ^= (~s[2]) & s[3]; s[2] ^= (~s[3]) & s[4]; s[3] ^= (~s[4]) & v; s[4] ^= (~v) & w;
v = s[5]; w = s[6]; s[5] ^= (~w) & s[7]; s[6] ^= (~s[7]) & s[8]; s[7] ^= (~s[8]) & s[9]; s[8] ^= (~s[9]) & v; s[9] ^= (~v) & w;
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */
s[0] ^= vectorize(d_keccak_round_constants[i]);
}
}
__global__
void quark_keccak512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint64_t *inpHash = &g_hash[8 * hashPosition];
uint2 keccak_gpu_state[25];
for (int i = 0; i<8; i++) {
keccak_gpu_state[i] = vectorize(inpHash[i]);
}
keccak_gpu_state[8] = vectorize(0x8000000000000001ULL);
for (int i=9; i<25; i++) {
keccak_gpu_state[i] = make_uint2(0, 0);
}
keccak_block(keccak_gpu_state);
for(int i=0; i<8; i++) {
inpHash[i] = devectorize(keccak_gpu_state[i]);
}
}
}
__device__ __forceinline__
static void keccak_block_v30(uint64_t *s, const uint32_t *in)
{
size_t i; size_t i;
uint64_t t[5], u[5], v, w; uint64_t t[5], u[5], v, w;
/* absorb input */ #pragma unroll 9
#pragma unroll 9
for (i = 0; i < 72 / 8; i++, in += 2) for (i = 0; i < 72 / 8; i++, in += 2)
s[i] ^= U32TO64_LE(in); s[i] ^= U32TO64_LE(in);
@ -93,11 +188,12 @@ keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_const
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */ /* iota: a[0,0] ^= round constant */
s[0] ^= keccak_round_constants[i]; s[0] ^= d_keccak_round_constants[i];
} }
} }
__global__ void quark_keccak512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) __global__
void quark_keccak512_gpu_hash_64_v30(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{ {
int thread = (blockDim.x * blockIdx.x + threadIdx.x); int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads) if (thread < threads)
@ -107,62 +203,55 @@ __global__ void quark_keccak512_gpu_hash_64(int threads, uint32_t startNounce, u
int hashPosition = nounce - startNounce; int hashPosition = nounce - startNounce;
uint32_t *inpHash = (uint32_t*)&g_hash[8 * hashPosition]; uint32_t *inpHash = (uint32_t*)&g_hash[8 * hashPosition];
// Nachricht kopieren
uint32_t message[18]; uint32_t message[18];
#pragma unroll 16 #pragma unroll 16
for(int i=0;i<16;i++) for(int i=0;i<16;i++)
message[i] = inpHash[i]; message[i] = inpHash[i];
message[16] = 0x01; message[16] = 0x01;
message[17] = 0x80000000; message[17] = 0x80000000;
// State initialisieren
uint64_t keccak_gpu_state[25]; uint64_t keccak_gpu_state[25];
#pragma unroll 25 #pragma unroll 25
for (int i=0; i<25; i++) for (int i=0; i<25; i++)
keccak_gpu_state[i] = 0; keccak_gpu_state[i] = 0;
// den Block einmal gut durchschütteln keccak_block_v30(keccak_gpu_state, message);
keccak_block(keccak_gpu_state, message, c_keccak_round_constants);
// das Hash erzeugen
uint32_t hash[16]; uint32_t hash[16];
#pragma unroll 8
#pragma unroll 8
for (size_t i = 0; i < 64; i += 8) { for (size_t i = 0; i < 64; i += 8) {
U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]); U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]);
} }
// fertig
uint32_t *outpHash = (uint32_t*)&g_hash[8 * hashPosition]; uint32_t *outpHash = (uint32_t*)&g_hash[8 * hashPosition];
#pragma unroll 16
#pragma unroll 16 for(int i=0; i<16; i++)
for(int i=0;i<16;i++)
outpHash[i] = hash[i]; outpHash[i] = hash[i];
} }
} }
// Setup-Funktionen __host__
__host__ void quark_keccak512_cpu_init(int thr_id, int threads) void quark_keccak512_cpu_init(int thr_id, int threads)
{ {
// Kopiere die Hash-Tabellen in den GPU-Speicher cudaMemcpyToSymbol( d_keccak_round_constants,
cudaMemcpyToSymbol( c_keccak_round_constants,
host_keccak_round_constants, host_keccak_round_constants,
sizeof(host_keccak_round_constants), sizeof(host_keccak_round_constants),
0, cudaMemcpyHostToDevice); 0, cudaMemcpyHostToDevice);
} }
__host__ void quark_keccak512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) __host__
void quark_keccak512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{ {
const int threadsperblock = 256; const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock); dim3 block(threadsperblock);
// Größe des dynamischen Shared Memory Bereichs if (device_sm[device_map[thr_id]] >= 320)
size_t shared_size = 0; quark_keccak512_gpu_hash_64<<<grid, block>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
else
quark_keccak512_gpu_hash_64_v30<<<grid, block>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
quark_keccak512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id); MyStreamSynchronize(NULL, order, thr_id);
} }