Browse Source

scrypt: strip keccak/blake 256 remains

2upstream
Tanguy Pruvot 10 years ago
parent
commit
22c28ccbef
  1. 17
      scrypt-jane.cpp
  2. 4
      scrypt.cpp
  3. 367
      scrypt/keccak.cu
  4. 781
      scrypt/nv_kernel.cu
  5. 6
      scrypt/nv_kernel.h
  6. 1091
      scrypt/nv_kernel2.cu
  7. 6
      scrypt/nv_kernel2.h
  8. 38
      scrypt/salsa_kernel.cu
  9. 28
      scrypt/salsa_kernel.h

17
scrypt-jane.cpp

@ -240,13 +240,12 @@ static void scrypt_hmac_finish(scrypt_hmac_state *st, scrypt_hash_digest mac)
* - mikaelh * - mikaelh
*/ */
static void scrypt_pbkdf2_1(const uint8_t *password, size_t password_len, static void scrypt_pbkdf2_1(const uint8_t *password, size_t password_len,
const uint8_t *salt, size_t salt_len, uint8_t *out, size_t bytes) const uint8_t *salt, size_t salt_len, uint8_t *out, uint64_t bytes)
{ {
scrypt_hmac_state hmac_pw, hmac_pw_salt, work; scrypt_hmac_state hmac_pw, hmac_pw_salt, work;
scrypt_hash_digest ti, u; scrypt_hash_digest ti, u;
uint8_t be[4]; uint8_t be[4];
uint32_t i, /*j,*/ blocks; uint32_t i, blocks;
// uint64_t c;
/* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */ /* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */
@ -266,7 +265,7 @@ static void scrypt_pbkdf2_1(const uint8_t *password, size_t password_len,
scrypt_hmac_finish(&work, ti); scrypt_hmac_finish(&work, ti);
memcpy(u, ti, sizeof(u)); memcpy(u, ti, sizeof(u));
memcpy(out, ti, (bytes > SCRYPT_HASH_DIGEST_SIZE) ? SCRYPT_HASH_DIGEST_SIZE : bytes); memcpy(out, ti, (size_t) (bytes > SCRYPT_HASH_DIGEST_SIZE ? SCRYPT_HASH_DIGEST_SIZE : bytes));
out += SCRYPT_HASH_DIGEST_SIZE; out += SCRYPT_HASH_DIGEST_SIZE;
bytes -= SCRYPT_HASH_DIGEST_SIZE; bytes -= SCRYPT_HASH_DIGEST_SIZE;
} }
@ -631,7 +630,7 @@ int scanhash_scrypt_jane(int thr_id, uint32_t *pdata, const uint32_t *ptarget, u
static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, const uchar*salt, size_t salt_len, uint32_t N, static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, const uchar*salt, size_t salt_len, uint32_t N,
uchar *out, size_t bytes, uint8_t *X, uint8_t *Y, uint8_t *V) uchar *out, uint32_t bytes, uint8_t *X, uint8_t *Y, uint8_t *V)
{ {
uint32_t chunk_bytes, i; uint32_t chunk_bytes, i;
const uint32_t p = SCRYPT_P; const uint32_t p = SCRYPT_P;
@ -650,7 +649,7 @@ static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, con
scrypt_ROMix_1((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V, N); scrypt_ROMix_1((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V, N);
/* 3: Out = PBKDF2(password, X) */ /* 3: Out = PBKDF2(password, X) */
scrypt_pbkdf2_1(password, password_len, X, chunk_bytes * p, out, bytes); scrypt_pbkdf2_1(password, password_len, X, chunk_bytes * p, out, (size_t) bytes);
#ifdef SCRYPT_PREVENT_STATE_LEAK #ifdef SCRYPT_PREVENT_STATE_LEAK
/* This is an unnecessary security feature - mikaelh */ /* This is an unnecessary security feature - mikaelh */
@ -661,7 +660,7 @@ static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, con
/* for cpu hash test */ /* for cpu hash test */
void scryptjane_hash(void* output, const void* input) void scryptjane_hash(void* output, const void* input)
{ {
uint64_t Nsize = 1ULL << (opt_nfactor + 1); uint32_t Nsize = 1UL << (opt_nfactor + 1);
uint64_t chunk_bytes; uint64_t chunk_bytes;
uint8_t *X, *Y; uint8_t *X, *Y;
scrypt_aligned_alloc YX, V; scrypt_aligned_alloc YX, V;
@ -670,12 +669,12 @@ void scryptjane_hash(void* output, const void* input)
V = scrypt_alloc(Nsize * chunk_bytes); V = scrypt_alloc(Nsize * chunk_bytes);
YX = scrypt_alloc((SCRYPT_P + 1) * chunk_bytes); YX = scrypt_alloc((SCRYPT_P + 1) * chunk_bytes);
memset(V.ptr, 0, Nsize * chunk_bytes); memset(V.ptr, 0, (size_t) (Nsize * chunk_bytes));
Y = YX.ptr; Y = YX.ptr;
X = Y + chunk_bytes; X = Y + chunk_bytes;
scrypt_jane_hash_1_1((uchar*)input, 80, (uchar*)input, 80, Nsize, (uchar*)output, 32, X, Y, V.ptr); scrypt_jane_hash_1_1((uchar*)input, 80, (uchar*)input, 80, (uint32_t) Nsize, (uchar*)output, 32, X, Y, V.ptr);
scrypt_free(&V); scrypt_free(&V);
scrypt_free(&YX); scrypt_free(&YX);

4
scrypt.cpp

@ -994,12 +994,12 @@ static void xor_salsa8(uint32_t * const B, const uint32_t * const C)
*/ */
static void scrypt_core(uint32_t *X, uint32_t *V, uint32_t N) static void scrypt_core(uint32_t *X, uint32_t *V, uint32_t N)
{ {
for (int i = 0; i < N; i++) { for (uint32_t i = 0; i < N; i++) {
memcpy(&V[i * 32], X, 128); memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]); xor_salsa8(&X[16], &X[0]);
} }
for (int i = 0; i < N; i++) { for (uint32_t i = 0; i < N; i++) {
uint32_t j = 32 * (X[16] & (N - 1)); uint32_t j = 32 * (X[16] & (N - 1));
for (uint8_t k = 0; k < 32; k++) for (uint8_t k = 0; k < 32; k++)
X[k] ^= V[j + k]; X[k] ^= V[j + k];

367
scrypt/keccak.cu

@ -4,21 +4,16 @@
// The keccak512 (SHA-3) is used in the PBKDF2 for scrypt-jane coins // The keccak512 (SHA-3) is used in the PBKDF2 for scrypt-jane coins
// in place of the SHA2 based PBKDF2 used in scrypt coins. // in place of the SHA2 based PBKDF2 used in scrypt coins.
// //
// The keccak256 is used exclusively in Maxcoin and clones. This module // NOTE: compile this .cu module for compute_20,sm_20 with --maxrregcount=64
// holds the generic "default" implementation when no architecture
// specific implementation is available in the kernel.
//
// NOTE: compile this .cu module for compute_10,sm_10 with --maxrregcount=64
// //
#include <map> #include <map>
#include <stdint.h>
#include "salsa_kernel.h"
#include "cuda_runtime.h"
#include "miner.h" #include "miner.h"
#include "cuda_helper.h"
#include "keccak.h" #include "keccak.h"
#include "salsa_kernel.h"
// define some error checking macros // define some error checking macros
#undef checkCudaErrors #undef checkCudaErrors
@ -45,7 +40,9 @@ extern std::map<int, uint32_t *> context_odata[2];
extern std::map<int, cudaStream_t> context_streams[2]; extern std::map<int, cudaStream_t> context_streams[2];
extern std::map<int, uint32_t *> context_hash[2]; extern std::map<int, uint32_t *> context_hash[2];
#ifndef ROTL64
#define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b))) #define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b)))
#endif
// CB // CB
#define U32TO64_LE(p) \ #define U32TO64_LE(p) \
@ -375,11 +372,6 @@ __device__ void pbkdf2_statecopy8(pbkdf2_hmac_state *d, pbkdf2_hmac_state *s) {
// ---------------------------- END PBKDF2 functions ------------------------------------ // ---------------------------- END PBKDF2 functions ------------------------------------
static __device__ uint32_t cuda_swab32(uint32_t x) {
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
__global__ __launch_bounds__(128) __global__ __launch_bounds__(128)
void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce) void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce)
{ {
@ -486,352 +478,3 @@ extern "C" void post_keccak512(int thr_id, int stream, uint32_t nonce, int throu
cuda_post_keccak512<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_odata[stream][thr_id], context_hash[stream][thr_id], nonce); cuda_post_keccak512<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_odata[stream][thr_id], context_hash[stream][thr_id], nonce);
} }
//
// Maxcoin related Keccak implementation (Keccak256)
//
#include <stdint.h>
#include <map>
extern std::map<int, int> context_blocks;
extern std::map<int, int> context_wpb;
extern std::map<int, KernelInterface *> context_kernel;
__constant__ uint64_t ptarget64[4];
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64))))
#define ROL_mult8(a, offset) ROL(a, offset)
__constant__ uint64_t KeccakF_RoundConstants[24];
static uint64_t host_KeccakF_RoundConstants[24] = {
(uint64_t)0x0000000000000001ULL,
(uint64_t)0x0000000000008082ULL,
(uint64_t)0x800000000000808aULL,
(uint64_t)0x8000000080008000ULL,
(uint64_t)0x000000000000808bULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008009ULL,
(uint64_t)0x000000000000008aULL,
(uint64_t)0x0000000000000088ULL,
(uint64_t)0x0000000080008009ULL,
(uint64_t)0x000000008000000aULL,
(uint64_t)0x000000008000808bULL,
(uint64_t)0x800000000000008bULL,
(uint64_t)0x8000000000008089ULL,
(uint64_t)0x8000000000008003ULL,
(uint64_t)0x8000000000008002ULL,
(uint64_t)0x8000000000000080ULL,
(uint64_t)0x000000000000800aULL,
(uint64_t)0x800000008000000aULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008080ULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008008ULL
};
__constant__ uint64_t pdata64[10];
__global__
void crypto_hash(uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate)
{
uint64_t Aba, Abe, Abi, Abo, Abu;
uint64_t Aga, Age, Agi, Ago, Agu;
uint64_t Aka, Ake, Aki, Ako, Aku;
uint64_t Ama, Ame, Ami, Amo, Amu;
uint64_t Asa, Ase, Asi, Aso, Asu;
uint64_t BCa, BCe, BCi, BCo, BCu;
uint64_t Da, De, Di, Do, Du;
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
uint64_t Ega, Ege, Egi, Ego, Egu;
uint64_t Eka, Eke, Eki, Eko, Eku;
uint64_t Ema, Eme, Emi, Emo, Emu;
uint64_t Esa, Ese, Esi, Eso, Esu;
//copyFromState(A, state)
Aba = pdata64[0];
Abe = pdata64[1];
Abi = pdata64[2];
Abo = pdata64[3];
Abu = pdata64[4];
Aga = pdata64[5];
Age = pdata64[6];
Agi = pdata64[7];
Ago = pdata64[8];
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32);
Aka = 0x0000000000000001ULL;
Ake = 0;
Aki = 0;
Ako = 0;
Aku = 0;
Ama = 0;
Ame = 0x8000000000000000ULL;
Ami = 0;
Amo = 0;
Amu = 0;
Asa = 0;
Ase = 0;
Asi = 0;
Aso = 0;
Asu = 0;
#pragma unroll 12
for( int laneCount = 0; laneCount < 24; laneCount += 2 )
{
// prepareTheta
BCa = Aba^Aga^Aka^Ama^Asa;
BCe = Abe^Age^Ake^Ame^Ase;
BCi = Abi^Agi^Aki^Ami^Asi;
BCo = Abo^Ago^Ako^Amo^Aso;
BCu = Abu^Agu^Aku^Amu^Asu;
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Aba ^= Da;
BCa = Aba;
Age ^= De;
BCe = ROL(Age, 44);
Aki ^= Di;
BCi = ROL(Aki, 43);
Amo ^= Do;
BCo = ROL(Amo, 21);
Asu ^= Du;
BCu = ROL(Asu, 14);
Eba = BCa ^((~BCe)& BCi );
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount];
Ebe = BCe ^((~BCi)& BCo );
Ebi = BCi ^((~BCo)& BCu );
Ebo = BCo ^((~BCu)& BCa );
Ebu = BCu ^((~BCa)& BCe );
Abo ^= Do;
BCa = ROL(Abo, 28);
Agu ^= Du;
BCe = ROL(Agu, 20);
Aka ^= Da;
BCi = ROL(Aka, 3);
Ame ^= De;
BCo = ROL(Ame, 45);
Asi ^= Di;
BCu = ROL(Asi, 61);
Ega = BCa ^((~BCe)& BCi );
Ege = BCe ^((~BCi)& BCo );
Egi = BCi ^((~BCo)& BCu );
Ego = BCo ^((~BCu)& BCa );
Egu = BCu ^((~BCa)& BCe );
Abe ^= De;
BCa = ROL(Abe, 1);
Agi ^= Di;
BCe = ROL(Agi, 6);
Ako ^= Do;
BCi = ROL(Ako, 25);
Amu ^= Du;
BCo = ROL_mult8(Amu, 8);
Asa ^= Da;
BCu = ROL(Asa, 18);
Eka = BCa ^((~BCe)& BCi );
Eke = BCe ^((~BCi)& BCo );
Eki = BCi ^((~BCo)& BCu );
Eko = BCo ^((~BCu)& BCa );
Eku = BCu ^((~BCa)& BCe );
Abu ^= Du;
BCa = ROL(Abu, 27);
Aga ^= Da;
BCe = ROL(Aga, 36);
Ake ^= De;
BCi = ROL(Ake, 10);
Ami ^= Di;
BCo = ROL(Ami, 15);
Aso ^= Do;
BCu = ROL_mult8(Aso, 56);
Ema = BCa ^((~BCe)& BCi );
Eme = BCe ^((~BCi)& BCo );
Emi = BCi ^((~BCo)& BCu );
Emo = BCo ^((~BCu)& BCa );
Emu = BCu ^((~BCa)& BCe );
Abi ^= Di;
BCa = ROL(Abi, 62);
Ago ^= Do;
BCe = ROL(Ago, 55);
Aku ^= Du;
BCi = ROL(Aku, 39);
Ama ^= Da;
BCo = ROL(Ama, 41);
Ase ^= De;
BCu = ROL(Ase, 2);
Esa = BCa ^((~BCe)& BCi );
Ese = BCe ^((~BCi)& BCo );
Esi = BCi ^((~BCo)& BCu );
Eso = BCo ^((~BCu)& BCa );
Esu = BCu ^((~BCa)& BCe );
// prepareTheta
BCa = Eba^Ega^Eka^Ema^Esa;
BCe = Ebe^Ege^Eke^Eme^Ese;
BCi = Ebi^Egi^Eki^Emi^Esi;
BCo = Ebo^Ego^Eko^Emo^Eso;
BCu = Ebu^Egu^Eku^Emu^Esu;
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Eba ^= Da;
BCa = Eba;
Ege ^= De;
BCe = ROL(Ege, 44);
Eki ^= Di;
BCi = ROL(Eki, 43);
Emo ^= Do;
BCo = ROL(Emo, 21);
Esu ^= Du;
BCu = ROL(Esu, 14);
Aba = BCa ^((~BCe)& BCi );
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1];
Abe = BCe ^((~BCi)& BCo );
Abi = BCi ^((~BCo)& BCu );
Abo = BCo ^((~BCu)& BCa );
Abu = BCu ^((~BCa)& BCe );
Ebo ^= Do;
BCa = ROL(Ebo, 28);
Egu ^= Du;
BCe = ROL(Egu, 20);
Eka ^= Da;
BCi = ROL(Eka, 3);
Eme ^= De;
BCo = ROL(Eme, 45);
Esi ^= Di;
BCu = ROL(Esi, 61);
Aga = BCa ^((~BCe)& BCi );
Age = BCe ^((~BCi)& BCo );
Agi = BCi ^((~BCo)& BCu );
Ago = BCo ^((~BCu)& BCa );
Agu = BCu ^((~BCa)& BCe );
Ebe ^= De;
BCa = ROL(Ebe, 1);
Egi ^= Di;
BCe = ROL(Egi, 6);
Eko ^= Do;
BCi = ROL(Eko, 25);
Emu ^= Du;
BCo = ROL_mult8(Emu, 8);
Esa ^= Da;
BCu = ROL(Esa, 18);
Aka = BCa ^((~BCe)& BCi );
Ake = BCe ^((~BCi)& BCo );
Aki = BCi ^((~BCo)& BCu );
Ako = BCo ^((~BCu)& BCa );
Aku = BCu ^((~BCa)& BCe );
Ebu ^= Du;
BCa = ROL(Ebu, 27);
Ega ^= Da;
BCe = ROL(Ega, 36);
Eke ^= De;
BCi = ROL(Eke, 10);
Emi ^= Di;
BCo = ROL(Emi, 15);
Eso ^= Do;
BCu = ROL_mult8(Eso, 56);
Ama = BCa ^((~BCe)& BCi );
Ame = BCe ^((~BCi)& BCo );
Ami = BCi ^((~BCo)& BCu );
Amo = BCo ^((~BCu)& BCa );
Amu = BCu ^((~BCa)& BCe );
Ebi ^= Di;
BCa = ROL(Ebi, 62);
Ego ^= Do;
BCe = ROL(Ego, 55);
Eku ^= Du;
BCi = ROL(Eku, 39);
Ema ^= Da;
BCo = ROL(Ema, 41);
Ese ^= De;
BCu = ROL(Ese, 2);
Asa = BCa ^((~BCe)& BCi );
Ase = BCe ^((~BCi)& BCo );
Asi = BCi ^((~BCo)& BCu );
Aso = BCo ^((~BCu)& BCa );
Asu = BCu ^((~BCa)& BCe );
}
if (validate) {
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
g_out[3] = Abo;
g_out[2] = Abi;
g_out[1] = Abe;
g_out[0] = Aba;
}
// the likelyhood of meeting the hashing target is so low, that we're not guarding this
// with atomic writes, locks or similar...
uint64_t *g_good64 = (uint64_t*)g_good;
if (Abo <= ptarget64[3]) {
if (Abo < g_good64[3]) {
g_good64[3] = Abo;
g_good64[2] = Abi;
g_good64[1] = Abe;
g_good64[0] = Aba;
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
static std::map<int, uint32_t *> context_good[2];
bool default_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
static bool init[MAX_GPUS] = { 0 };
if (!init[thr_id])
{
checkCudaErrors(cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice));
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
checkCudaErrors(cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
return context_good[0][thr_id] && context_good[1][thr_id];
}
void default_do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
crypto_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
// copy hashes from device memory to host (ALL hashes, lots of data...)
if (do_d2h && hash != NULL) {
size_t mem_size = throughput * sizeof(uint32_t) * 8;
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
else if (hash != NULL) {
// asynchronous copy of winning nonce (just 4 bytes...)
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
}

781
scrypt/nv_kernel.cu

@ -708,784 +708,3 @@ void nv_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned i
__transposed_write_BC(B, C, (uint4*)(g_odata), 1); __transposed_write_BC(B, C, (uint4*)(g_odata), 1);
} }
//
// Maxcoin related Keccak implementation (Keccak256)
//
// from salsa_kernel.cu
extern std::map<int, int> context_blocks;
extern std::map<int, int> context_wpb;
extern std::map<int, KernelInterface *> context_kernel;
extern std::map<int, cudaStream_t> context_streams[2];
extern std::map<int, uint32_t *> context_hash[2];
__constant__ uint64_t ptarget64[4];
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64))))
#define ROL_mult8(a, offset) ROL(a, offset)
__constant__ uint64_t KeccakF_RoundConstants[24];
static uint64_t host_KeccakF_RoundConstants[24] = {
(uint64_t)0x0000000000000001ULL,
(uint64_t)0x0000000000008082ULL,
(uint64_t)0x800000000000808aULL,
(uint64_t)0x8000000080008000ULL,
(uint64_t)0x000000000000808bULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008009ULL,
(uint64_t)0x000000000000008aULL,
(uint64_t)0x0000000000000088ULL,
(uint64_t)0x0000000080008009ULL,
(uint64_t)0x000000008000000aULL,
(uint64_t)0x000000008000808bULL,
(uint64_t)0x800000000000008bULL,
(uint64_t)0x8000000000008089ULL,
(uint64_t)0x8000000000008003ULL,
(uint64_t)0x8000000000008002ULL,
(uint64_t)0x8000000000000080ULL,
(uint64_t)0x000000000000800aULL,
(uint64_t)0x800000008000000aULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008080ULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008008ULL
};
__constant__ uint64_t pdata64[10];
static __device__ uint32_t cuda_swab32(uint32_t x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
__global__
void kepler_crypto_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate )
{
uint64_t Aba, Abe, Abi, Abo, Abu;
uint64_t Aga, Age, Agi, Ago, Agu;
uint64_t Aka, Ake, Aki, Ako, Aku;
uint64_t Ama, Ame, Ami, Amo, Amu;
uint64_t Asa, Ase, Asi, Aso, Asu;
uint64_t BCa, BCe, BCi, BCo, BCu;
uint64_t Da, De, Di, Do, Du;
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
uint64_t Ega, Ege, Egi, Ego, Egu;
uint64_t Eka, Eke, Eki, Eko, Eku;
uint64_t Ema, Eme, Emi, Emo, Emu;
uint64_t Esa, Ese, Esi, Eso, Esu;
//copyFromState(A, state)
Aba = pdata64[0];
Abe = pdata64[1];
Abi = pdata64[2];
Abo = pdata64[3];
Abu = pdata64[4];
Aga = pdata64[5];
Age = pdata64[6];
Agi = pdata64[7];
Ago = pdata64[8];
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32);
Aka = 0x0000000000000001ULL;
Ake = 0;
Aki = 0;
Ako = 0;
Aku = 0;
Ama = 0;
Ame = 0x8000000000000000ULL;
Ami = 0;
Amo = 0;
Amu = 0;
Asa = 0;
Ase = 0;
Asi = 0;
Aso = 0;
Asu = 0;
#pragma unroll 12
for( int laneCount = 0; laneCount < 24; laneCount += 2 )
{
// prepareTheta
BCa = Aba^Aga^Aka^Ama^Asa;
BCe = Abe^Age^Ake^Ame^Ase;
BCi = Abi^Agi^Aki^Ami^Asi;
BCo = Abo^Ago^Ako^Amo^Aso;
BCu = Abu^Agu^Aku^Amu^Asu;
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Aba ^= Da;
BCa = Aba;
Age ^= De;
BCe = ROL(Age, 44);
Aki ^= Di;
BCi = ROL(Aki, 43);
Amo ^= Do;
BCo = ROL(Amo, 21);
Asu ^= Du;
BCu = ROL(Asu, 14);
Eba = BCa ^((~BCe)& BCi );
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount];
Ebe = BCe ^((~BCi)& BCo );
Ebi = BCi ^((~BCo)& BCu );
Ebo = BCo ^((~BCu)& BCa );
Ebu = BCu ^((~BCa)& BCe );
Abo ^= Do;
BCa = ROL(Abo, 28);
Agu ^= Du;
BCe = ROL(Agu, 20);
Aka ^= Da;
BCi = ROL(Aka, 3);
Ame ^= De;
BCo = ROL(Ame, 45);
Asi ^= Di;
BCu = ROL(Asi, 61);
Ega = BCa ^((~BCe)& BCi );
Ege = BCe ^((~BCi)& BCo );
Egi = BCi ^((~BCo)& BCu );
Ego = BCo ^((~BCu)& BCa );
Egu = BCu ^((~BCa)& BCe );
Abe ^= De;
BCa = ROL(Abe, 1);
Agi ^= Di;
BCe = ROL(Agi, 6);
Ako ^= Do;
BCi = ROL(Ako, 25);
Amu ^= Du;
BCo = ROL_mult8(Amu, 8);
Asa ^= Da;
BCu = ROL(Asa, 18);
Eka = BCa ^((~BCe)& BCi );
Eke = BCe ^((~BCi)& BCo );
Eki = BCi ^((~BCo)& BCu );
Eko = BCo ^((~BCu)& BCa );
Eku = BCu ^((~BCa)& BCe );
Abu ^= Du;
BCa = ROL(Abu, 27);
Aga ^= Da;
BCe = ROL(Aga, 36);
Ake ^= De;
BCi = ROL(Ake, 10);
Ami ^= Di;
BCo = ROL(Ami, 15);
Aso ^= Do;
BCu = ROL_mult8(Aso, 56);
Ema = BCa ^((~BCe)& BCi );
Eme = BCe ^((~BCi)& BCo );
Emi = BCi ^((~BCo)& BCu );
Emo = BCo ^((~BCu)& BCa );
Emu = BCu ^((~BCa)& BCe );
Abi ^= Di;
BCa = ROL(Abi, 62);
Ago ^= Do;
BCe = ROL(Ago, 55);
Aku ^= Du;
BCi = ROL(Aku, 39);
Ama ^= Da;
BCo = ROL(Ama, 41);
Ase ^= De;
BCu = ROL(Ase, 2);
Esa = BCa ^((~BCe)& BCi );
Ese = BCe ^((~BCi)& BCo );
Esi = BCi ^((~BCo)& BCu );
Eso = BCo ^((~BCu)& BCa );
Esu = BCu ^((~BCa)& BCe );
// prepareTheta
BCa = Eba^Ega^Eka^Ema^Esa;
BCe = Ebe^Ege^Eke^Eme^Ese;
BCi = Ebi^Egi^Eki^Emi^Esi;
BCo = Ebo^Ego^Eko^Emo^Eso;
BCu = Ebu^Egu^Eku^Emu^Esu;
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Eba ^= Da;
BCa = Eba;
Ege ^= De;
BCe = ROL(Ege, 44);
Eki ^= Di;
BCi = ROL(Eki, 43);
Emo ^= Do;
BCo = ROL(Emo, 21);
Esu ^= Du;
BCu = ROL(Esu, 14);
Aba = BCa ^((~BCe)& BCi );
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1];
Abe = BCe ^((~BCi)& BCo );
Abi = BCi ^((~BCo)& BCu );
Abo = BCo ^((~BCu)& BCa );
Abu = BCu ^((~BCa)& BCe );
Ebo ^= Do;
BCa = ROL(Ebo, 28);
Egu ^= Du;
BCe = ROL(Egu, 20);
Eka ^= Da;
BCi = ROL(Eka, 3);
Eme ^= De;
BCo = ROL(Eme, 45);
Esi ^= Di;
BCu = ROL(Esi, 61);
Aga = BCa ^((~BCe)& BCi );
Age = BCe ^((~BCi)& BCo );
Agi = BCi ^((~BCo)& BCu );
Ago = BCo ^((~BCu)& BCa );
Agu = BCu ^((~BCa)& BCe );
Ebe ^= De;
BCa = ROL(Ebe, 1);
Egi ^= Di;
BCe = ROL(Egi, 6);
Eko ^= Do;
BCi = ROL(Eko, 25);
Emu ^= Du;
BCo = ROL_mult8(Emu, 8);
Esa ^= Da;
BCu = ROL(Esa, 18);
Aka = BCa ^((~BCe)& BCi );
Ake = BCe ^((~BCi)& BCo );
Aki = BCi ^((~BCo)& BCu );
Ako = BCo ^((~BCu)& BCa );
Aku = BCu ^((~BCa)& BCe );
Ebu ^= Du;
BCa = ROL(Ebu, 27);
Ega ^= Da;
BCe = ROL(Ega, 36);
Eke ^= De;
BCi = ROL(Eke, 10);
Emi ^= Di;
BCo = ROL(Emi, 15);
Eso ^= Do;
BCu = ROL_mult8(Eso, 56);
Ama = BCa ^((~BCe)& BCi );
Ame = BCe ^((~BCi)& BCo );
Ami = BCi ^((~BCo)& BCu );
Amo = BCo ^((~BCu)& BCa );
Amu = BCu ^((~BCa)& BCe );
Ebi ^= Di;
BCa = ROL(Ebi, 62);
Ego ^= Do;
BCe = ROL(Ego, 55);
Eku ^= Du;
BCi = ROL(Eku, 39);
Ema ^= Da;
BCo = ROL(Ema, 41);
Ese ^= De;
BCu = ROL(Ese, 2);
Asa = BCa ^((~BCe)& BCi );
Ase = BCe ^((~BCi)& BCo );
Asi = BCi ^((~BCo)& BCu );
Aso = BCo ^((~BCu)& BCa );
Asu = BCu ^((~BCa)& BCe );
}
if (validate) {
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
g_out[3] = Abo;
g_out[2] = Abi;
g_out[1] = Abe;
g_out[0] = Aba;
}
// the likelyhood of meeting the hashing target is so low, that we're not guarding this
// with atomic writes, locks or similar...
uint64_t *g_good64 = (uint64_t*)g_good;
if (Abo <= ptarget64[3]) {
if (Abo < g_good64[3]) {
g_good64[3] = Abo;
g_good64[2] = Abi;
g_good64[1] = Abe;
g_good64[0] = Aba;
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
static std::map<int, uint32_t *> context_good[2];
bool NVKernel::prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
static bool init[MAX_GPUS] = { 0 };
if (!init[thr_id])
{
checkCudaErrors(cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice));
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
checkCudaErrors(cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
return context_good[0][thr_id] && context_good[1][thr_id];
}
void NVKernel::do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
kepler_crypto_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
// copy hashes from device memory to host (ALL hashes, lots of data...)
if (do_d2h && hash != NULL) {
size_t mem_size = throughput * sizeof(uint32_t) * 8;
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
else if (hash != NULL) {
// asynchronous copy of winning nonce (just 4 bytes...)
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
}
//
// Blakecoin related Keccak implementation (Keccak256)
//
typedef uint32_t sph_u32;
#define SPH_C32(x) ((sph_u32)(x))
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define SPH_ROTL32(a, b) ((a)<<(b))|((a)>>(32-(b)))
#else
// Kepler (Compute 3.5)
#define SPH_ROTL32(a, b) __funnelshift_l( a, a, b );
#endif
#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n)))
__constant__ uint32_t pdata[20];
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static __device__ sph_u32 cuda_sph_bswap32(sph_u32 x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
/**
* Encode a 32-bit value into the provided buffer (big endian convention).
*
* @param dst the destination buffer
* @param val the 32-bit value to encode
*/
static __device__ void
cuda_sph_enc32be(void *dst, sph_u32 val)
{
*(sph_u32 *)dst = cuda_sph_bswap32(val);
}
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#define COMPRESS32 do { \
sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \
sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \
sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = S0 ^ CS0; \
V9 = S1 ^ CS1; \
VA = S2 ^ CS2; \
VB = S3 ^ CS3; \
VC = T0 ^ CS4; \
VD = T0 ^ CS5; \
VE = T1 ^ CS6; \
VF = T1 ^ CS7; \
M0 = input[0]; \
M1 = input[1]; \
M2 = input[2]; \
M3 = input[3]; \
M4 = input[4]; \
M5 = input[5]; \
M6 = input[6]; \
M7 = input[7]; \
M8 = input[8]; \
M9 = input[9]; \
MA = input[10]; \
MB = input[11]; \
MC = input[12]; \
MD = input[13]; \
ME = input[14]; \
MF = input[15]; \
ROUND_S(0); \
ROUND_S(1); \
ROUND_S(2); \
ROUND_S(3); \
ROUND_S(4); \
ROUND_S(5); \
ROUND_S(6); \
ROUND_S(7); \
H0 ^= S0 ^ V0 ^ V8; \
H1 ^= S1 ^ V1 ^ V9; \
H2 ^= S2 ^ V2 ^ VA; \
H3 ^= S3 ^ V3 ^ VB; \
H4 ^= S0 ^ V4 ^ VC; \
H5 ^= S1 ^ V5 ^ VD; \
H6 ^= S2 ^ V6 ^ VE; \
H7 ^= S3 ^ V7 ^ VF; \
} while (0)
__global__
void kepler_blake256_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate)
{
uint32_t input[16];
uint64_t output[4];
#pragma unroll
for (int i=0; i < 16; ++i) input[i] = pdata[i];
sph_u32 H0 = 0x6A09E667;
sph_u32 H1 = 0xBB67AE85;
sph_u32 H2 = 0x3C6EF372;
sph_u32 H3 = 0xA54FF53A;
sph_u32 H4 = 0x510E527F;
sph_u32 H5 = 0x9B05688C;
sph_u32 H6 = 0x1F83D9AB;
sph_u32 H7 = 0x5BE0CD19;
sph_u32 S0 = 0;
sph_u32 S1 = 0;
sph_u32 S2 = 0;
sph_u32 S3 = 0;
sph_u32 T0 = 0;
sph_u32 T1 = 0;
T0 = SPH_T32(T0 + 512);
COMPRESS32;
#pragma unroll
for (int i=0; i < 3; ++i) input[i] = pdata[16+i];
input[3] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
input[4] = 0x80000000;
#pragma unroll 8
for (int i=5; i < 13; ++i) input[i] = 0;
input[13] = 0x00000001;
input[14] = T1;
input[15] = T0 + 128;
T0 = SPH_T32(T0 + 128);
COMPRESS32;
cuda_sph_enc32be((unsigned char*)output + 4*6, H6);
cuda_sph_enc32be((unsigned char*)output + 4*7, H7);
if (validate || output[3] <= ptarget64[3])
{
// this data is only needed when we actually need to save the hashes
cuda_sph_enc32be((unsigned char*)output + 4*0, H0);
cuda_sph_enc32be((unsigned char*)output + 4*1, H1);
cuda_sph_enc32be((unsigned char*)output + 4*2, H2);
cuda_sph_enc32be((unsigned char*)output + 4*3, H3);
cuda_sph_enc32be((unsigned char*)output + 4*4, H4);
cuda_sph_enc32be((unsigned char*)output + 4*5, H5);
}
if (validate)
{
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
#pragma unroll
for (int i=0; i < 4; ++i) g_out[i] = output[i];
}
if (output[3] <= ptarget64[3]) {
uint64_t *g_good64 = (uint64_t*)g_good;
if (output[3] < g_good64[3]) {
g_good64[3] = output[3];
g_good64[2] = output[2];
g_good64[1] = output[1];
g_good64[0] = output[0];
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
bool NVKernel::prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
static bool init[MAX_GPUS] = { 0 };
if (!init[thr_id])
{
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
return context_good[0][thr_id] && context_good[1][thr_id];
}
void NVKernel::do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
kepler_blake256_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
// copy hashes from device memory to host (ALL hashes, lots of data...)
if (do_d2h && hash != NULL) {
size_t mem_size = throughput * sizeof(uint32_t) * 8;
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
else if (hash != NULL) {
// asynchronous copy of winning nonce (just 4 bytes...)
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
}

6
scrypt/nv_kernel.h

@ -25,12 +25,6 @@ public:
virtual bool support_lookup_gap() { return true; } virtual bool support_lookup_gap() { return true; }
virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeFourByte; } virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeFourByte; }
virtual cudaFuncCache cache_config() { return cudaFuncCachePreferL1; } virtual cudaFuncCache cache_config() { return cudaFuncCachePreferL1; }
virtual bool prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
virtual void do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
virtual bool prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8]);
virtual void do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
}; };
#endif // #ifndef NV_KERNEL_H #endif // #ifndef NV_KERNEL_H

1091
scrypt/nv_kernel2.cu

File diff suppressed because it is too large Load Diff

6
scrypt/nv_kernel2.h

@ -25,12 +25,6 @@ public:
virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeFourByte; } virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeFourByte; }
virtual cudaFuncCache cache_config() { return cudaFuncCachePreferL1; } virtual cudaFuncCache cache_config() { return cudaFuncCachePreferL1; }
virtual bool prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
virtual void do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
virtual bool prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8]);
virtual void do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
}; };
#endif // #ifndef NV2_KERNEL_H #endif // #ifndef NV2_KERNEL_H

38
scrypt/salsa_kernel.cu

@ -821,44 +821,6 @@ void cuda_scrypt_core(int thr_id, int stream, unsigned int N)
); );
} }
bool cuda_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8])
{
return context_kernel[thr_id]->prepare_keccak256(thr_id, host_pdata, ptarget);
}
#if 0
void cuda_do_keccak256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
unsigned int GRID_BLOCKS = context_blocks[thr_id];
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
// setup execution parameters
dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1);
dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1);
context_kernel[thr_id]->do_keccak256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
}
#endif
bool cuda_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8])
{
return context_kernel[thr_id]->prepare_blake256(thr_id, host_pdata, ptarget);
}
#if 0
void cuda_do_blake256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
unsigned int GRID_BLOCKS = context_blocks[thr_id];
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
// setup execution parameters
dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1);
dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1);
context_kernel[thr_id]->do_blake256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
}
#endif
void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA) void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA)
{ {
unsigned int GRID_BLOCKS = context_blocks[thr_id]; unsigned int GRID_BLOCKS = context_blocks[thr_id];

28
scrypt/salsa_kernel.h

@ -58,20 +58,6 @@ extern void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA);
extern bool cuda_scrypt_sync(int thr_id, int stream); extern bool cuda_scrypt_sync(int thr_id, int stream);
extern void cuda_scrypt_flush(int thr_id, int stream); extern void cuda_scrypt_flush(int thr_id, int stream);
extern bool cuda_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
extern void cuda_do_keccak256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
extern bool cuda_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
extern void cuda_do_blake256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
extern bool default_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
extern bool default_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
#ifdef __NVCC__
extern void default_do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
extern void default_do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
#endif
// If we're in C++ mode, we're either compiling .cu files or scrypt.cpp // If we're in C++ mode, we're either compiling .cu files or scrypt.cpp
#ifdef __NVCC__ #ifdef __NVCC__
@ -101,20 +87,6 @@ public:
virtual bool support_lookup_gap() { return false; } virtual bool support_lookup_gap() { return false; }
virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeDefault; } virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeDefault; }
virtual cudaFuncCache cache_config() { return cudaFuncCachePreferNone; } virtual cudaFuncCache cache_config() { return cudaFuncCachePreferNone; }
virtual bool prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]) {
return default_prepare_keccak256(thr_id, host_pdata, ptarget);
}
virtual void do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false) {
default_do_keccak256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
}
virtual bool prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]) {
return default_prepare_blake256(thr_id, host_pdata, ptarget);
}
virtual void do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false) {
default_do_blake256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
}
}; };
// Not performing error checking is actually bad, but... // Not performing error checking is actually bad, but...

Loading…
Cancel
Save