mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-22 04:24:29 +00:00
scrypt: strip keccak/blake 256 remains
This commit is contained in:
parent
a0c8bd8be4
commit
22c28ccbef
@ -240,13 +240,12 @@ static void scrypt_hmac_finish(scrypt_hmac_state *st, scrypt_hash_digest mac)
|
||||
* - mikaelh
|
||||
*/
|
||||
static void scrypt_pbkdf2_1(const uint8_t *password, size_t password_len,
|
||||
const uint8_t *salt, size_t salt_len, uint8_t *out, size_t bytes)
|
||||
const uint8_t *salt, size_t salt_len, uint8_t *out, uint64_t bytes)
|
||||
{
|
||||
scrypt_hmac_state hmac_pw, hmac_pw_salt, work;
|
||||
scrypt_hash_digest ti, u;
|
||||
uint8_t be[4];
|
||||
uint32_t i, /*j,*/ blocks;
|
||||
// uint64_t c;
|
||||
uint32_t i, blocks;
|
||||
|
||||
/* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */
|
||||
|
||||
@ -266,7 +265,7 @@ static void scrypt_pbkdf2_1(const uint8_t *password, size_t password_len,
|
||||
scrypt_hmac_finish(&work, ti);
|
||||
memcpy(u, ti, sizeof(u));
|
||||
|
||||
memcpy(out, ti, (bytes > SCRYPT_HASH_DIGEST_SIZE) ? SCRYPT_HASH_DIGEST_SIZE : bytes);
|
||||
memcpy(out, ti, (size_t) (bytes > SCRYPT_HASH_DIGEST_SIZE ? SCRYPT_HASH_DIGEST_SIZE : bytes));
|
||||
out += SCRYPT_HASH_DIGEST_SIZE;
|
||||
bytes -= SCRYPT_HASH_DIGEST_SIZE;
|
||||
}
|
||||
@ -631,7 +630,7 @@ int scanhash_scrypt_jane(int thr_id, uint32_t *pdata, const uint32_t *ptarget, u
|
||||
|
||||
|
||||
static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, const uchar*salt, size_t salt_len, uint32_t N,
|
||||
uchar *out, size_t bytes, uint8_t *X, uint8_t *Y, uint8_t *V)
|
||||
uchar *out, uint32_t bytes, uint8_t *X, uint8_t *Y, uint8_t *V)
|
||||
{
|
||||
uint32_t chunk_bytes, i;
|
||||
const uint32_t p = SCRYPT_P;
|
||||
@ -650,7 +649,7 @@ static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, con
|
||||
scrypt_ROMix_1((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V, N);
|
||||
|
||||
/* 3: Out = PBKDF2(password, X) */
|
||||
scrypt_pbkdf2_1(password, password_len, X, chunk_bytes * p, out, bytes);
|
||||
scrypt_pbkdf2_1(password, password_len, X, chunk_bytes * p, out, (size_t) bytes);
|
||||
|
||||
#ifdef SCRYPT_PREVENT_STATE_LEAK
|
||||
/* This is an unnecessary security feature - mikaelh */
|
||||
@ -661,7 +660,7 @@ static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, con
|
||||
/* for cpu hash test */
|
||||
void scryptjane_hash(void* output, const void* input)
|
||||
{
|
||||
uint64_t Nsize = 1ULL << (opt_nfactor + 1);
|
||||
uint32_t Nsize = 1UL << (opt_nfactor + 1);
|
||||
uint64_t chunk_bytes;
|
||||
uint8_t *X, *Y;
|
||||
scrypt_aligned_alloc YX, V;
|
||||
@ -670,12 +669,12 @@ void scryptjane_hash(void* output, const void* input)
|
||||
V = scrypt_alloc(Nsize * chunk_bytes);
|
||||
YX = scrypt_alloc((SCRYPT_P + 1) * chunk_bytes);
|
||||
|
||||
memset(V.ptr, 0, Nsize * chunk_bytes);
|
||||
memset(V.ptr, 0, (size_t) (Nsize * chunk_bytes));
|
||||
|
||||
Y = YX.ptr;
|
||||
X = Y + chunk_bytes;
|
||||
|
||||
scrypt_jane_hash_1_1((uchar*)input, 80, (uchar*)input, 80, Nsize, (uchar*)output, 32, X, Y, V.ptr);
|
||||
scrypt_jane_hash_1_1((uchar*)input, 80, (uchar*)input, 80, (uint32_t) Nsize, (uchar*)output, 32, X, Y, V.ptr);
|
||||
|
||||
scrypt_free(&V);
|
||||
scrypt_free(&YX);
|
||||
|
@ -994,12 +994,12 @@ static void xor_salsa8(uint32_t * const B, const uint32_t * const C)
|
||||
*/
|
||||
static void scrypt_core(uint32_t *X, uint32_t *V, uint32_t N)
|
||||
{
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (uint32_t i = 0; i < N; i++) {
|
||||
memcpy(&V[i * 32], X, 128);
|
||||
xor_salsa8(&X[0], &X[16]);
|
||||
xor_salsa8(&X[16], &X[0]);
|
||||
}
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (uint32_t i = 0; i < N; i++) {
|
||||
uint32_t j = 32 * (X[16] & (N - 1));
|
||||
for (uint8_t k = 0; k < 32; k++)
|
||||
X[k] ^= V[j + k];
|
||||
|
367
scrypt/keccak.cu
367
scrypt/keccak.cu
@ -4,21 +4,16 @@
|
||||
// The keccak512 (SHA-3) is used in the PBKDF2 for scrypt-jane coins
|
||||
// in place of the SHA2 based PBKDF2 used in scrypt coins.
|
||||
//
|
||||
// The keccak256 is used exclusively in Maxcoin and clones. This module
|
||||
// holds the generic "default" implementation when no architecture
|
||||
// specific implementation is available in the kernel.
|
||||
//
|
||||
// NOTE: compile this .cu module for compute_10,sm_10 with --maxrregcount=64
|
||||
// NOTE: compile this .cu module for compute_20,sm_20 with --maxrregcount=64
|
||||
//
|
||||
|
||||
#include <map>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "salsa_kernel.h"
|
||||
#include "cuda_runtime.h"
|
||||
#include "miner.h"
|
||||
#include "cuda_helper.h"
|
||||
|
||||
#include "keccak.h"
|
||||
#include "salsa_kernel.h"
|
||||
|
||||
// define some error checking macros
|
||||
#undef checkCudaErrors
|
||||
@ -45,7 +40,9 @@ extern std::map<int, uint32_t *> context_odata[2];
|
||||
extern std::map<int, cudaStream_t> context_streams[2];
|
||||
extern std::map<int, uint32_t *> context_hash[2];
|
||||
|
||||
#ifndef ROTL64
|
||||
#define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b)))
|
||||
#endif
|
||||
|
||||
// CB
|
||||
#define U32TO64_LE(p) \
|
||||
@ -375,11 +372,6 @@ __device__ void pbkdf2_statecopy8(pbkdf2_hmac_state *d, pbkdf2_hmac_state *s) {
|
||||
|
||||
// ---------------------------- END PBKDF2 functions ------------------------------------
|
||||
|
||||
static __device__ uint32_t cuda_swab32(uint32_t x) {
|
||||
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
|
||||
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
|
||||
}
|
||||
|
||||
__global__ __launch_bounds__(128)
|
||||
void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce)
|
||||
{
|
||||
@ -486,352 +478,3 @@ extern "C" void post_keccak512(int thr_id, int stream, uint32_t nonce, int throu
|
||||
|
||||
cuda_post_keccak512<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_odata[stream][thr_id], context_hash[stream][thr_id], nonce);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Maxcoin related Keccak implementation (Keccak256)
|
||||
//
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <map>
|
||||
extern std::map<int, int> context_blocks;
|
||||
extern std::map<int, int> context_wpb;
|
||||
extern std::map<int, KernelInterface *> context_kernel;
|
||||
|
||||
__constant__ uint64_t ptarget64[4];
|
||||
|
||||
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64))))
|
||||
#define ROL_mult8(a, offset) ROL(a, offset)
|
||||
|
||||
__constant__ uint64_t KeccakF_RoundConstants[24];
|
||||
|
||||
static uint64_t host_KeccakF_RoundConstants[24] = {
|
||||
(uint64_t)0x0000000000000001ULL,
|
||||
(uint64_t)0x0000000000008082ULL,
|
||||
(uint64_t)0x800000000000808aULL,
|
||||
(uint64_t)0x8000000080008000ULL,
|
||||
(uint64_t)0x000000000000808bULL,
|
||||
(uint64_t)0x0000000080000001ULL,
|
||||
(uint64_t)0x8000000080008081ULL,
|
||||
(uint64_t)0x8000000000008009ULL,
|
||||
(uint64_t)0x000000000000008aULL,
|
||||
(uint64_t)0x0000000000000088ULL,
|
||||
(uint64_t)0x0000000080008009ULL,
|
||||
(uint64_t)0x000000008000000aULL,
|
||||
(uint64_t)0x000000008000808bULL,
|
||||
(uint64_t)0x800000000000008bULL,
|
||||
(uint64_t)0x8000000000008089ULL,
|
||||
(uint64_t)0x8000000000008003ULL,
|
||||
(uint64_t)0x8000000000008002ULL,
|
||||
(uint64_t)0x8000000000000080ULL,
|
||||
(uint64_t)0x000000000000800aULL,
|
||||
(uint64_t)0x800000008000000aULL,
|
||||
(uint64_t)0x8000000080008081ULL,
|
||||
(uint64_t)0x8000000000008080ULL,
|
||||
(uint64_t)0x0000000080000001ULL,
|
||||
(uint64_t)0x8000000080008008ULL
|
||||
};
|
||||
|
||||
__constant__ uint64_t pdata64[10];
|
||||
|
||||
__global__
|
||||
void crypto_hash(uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate)
|
||||
{
|
||||
uint64_t Aba, Abe, Abi, Abo, Abu;
|
||||
uint64_t Aga, Age, Agi, Ago, Agu;
|
||||
uint64_t Aka, Ake, Aki, Ako, Aku;
|
||||
uint64_t Ama, Ame, Ami, Amo, Amu;
|
||||
uint64_t Asa, Ase, Asi, Aso, Asu;
|
||||
uint64_t BCa, BCe, BCi, BCo, BCu;
|
||||
uint64_t Da, De, Di, Do, Du;
|
||||
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
|
||||
uint64_t Ega, Ege, Egi, Ego, Egu;
|
||||
uint64_t Eka, Eke, Eki, Eko, Eku;
|
||||
uint64_t Ema, Eme, Emi, Emo, Emu;
|
||||
uint64_t Esa, Ese, Esi, Eso, Esu;
|
||||
|
||||
//copyFromState(A, state)
|
||||
Aba = pdata64[0];
|
||||
Abe = pdata64[1];
|
||||
Abi = pdata64[2];
|
||||
Abo = pdata64[3];
|
||||
Abu = pdata64[4];
|
||||
Aga = pdata64[5];
|
||||
Age = pdata64[6];
|
||||
Agi = pdata64[7];
|
||||
Ago = pdata64[8];
|
||||
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32);
|
||||
Aka = 0x0000000000000001ULL;
|
||||
Ake = 0;
|
||||
Aki = 0;
|
||||
Ako = 0;
|
||||
Aku = 0;
|
||||
Ama = 0;
|
||||
Ame = 0x8000000000000000ULL;
|
||||
Ami = 0;
|
||||
Amo = 0;
|
||||
Amu = 0;
|
||||
Asa = 0;
|
||||
Ase = 0;
|
||||
Asi = 0;
|
||||
Aso = 0;
|
||||
Asu = 0;
|
||||
|
||||
#pragma unroll 12
|
||||
for( int laneCount = 0; laneCount < 24; laneCount += 2 )
|
||||
{
|
||||
// prepareTheta
|
||||
BCa = Aba^Aga^Aka^Ama^Asa;
|
||||
BCe = Abe^Age^Ake^Ame^Ase;
|
||||
BCi = Abi^Agi^Aki^Ami^Asi;
|
||||
BCo = Abo^Ago^Ako^Amo^Aso;
|
||||
BCu = Abu^Agu^Aku^Amu^Asu;
|
||||
|
||||
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
|
||||
Aba ^= Da;
|
||||
BCa = Aba;
|
||||
Age ^= De;
|
||||
BCe = ROL(Age, 44);
|
||||
Aki ^= Di;
|
||||
BCi = ROL(Aki, 43);
|
||||
Amo ^= Do;
|
||||
BCo = ROL(Amo, 21);
|
||||
Asu ^= Du;
|
||||
BCu = ROL(Asu, 14);
|
||||
Eba = BCa ^((~BCe)& BCi );
|
||||
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount];
|
||||
Ebe = BCe ^((~BCi)& BCo );
|
||||
Ebi = BCi ^((~BCo)& BCu );
|
||||
Ebo = BCo ^((~BCu)& BCa );
|
||||
Ebu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abo ^= Do;
|
||||
BCa = ROL(Abo, 28);
|
||||
Agu ^= Du;
|
||||
BCe = ROL(Agu, 20);
|
||||
Aka ^= Da;
|
||||
BCi = ROL(Aka, 3);
|
||||
Ame ^= De;
|
||||
BCo = ROL(Ame, 45);
|
||||
Asi ^= Di;
|
||||
BCu = ROL(Asi, 61);
|
||||
Ega = BCa ^((~BCe)& BCi );
|
||||
Ege = BCe ^((~BCi)& BCo );
|
||||
Egi = BCi ^((~BCo)& BCu );
|
||||
Ego = BCo ^((~BCu)& BCa );
|
||||
Egu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abe ^= De;
|
||||
BCa = ROL(Abe, 1);
|
||||
Agi ^= Di;
|
||||
BCe = ROL(Agi, 6);
|
||||
Ako ^= Do;
|
||||
BCi = ROL(Ako, 25);
|
||||
Amu ^= Du;
|
||||
BCo = ROL_mult8(Amu, 8);
|
||||
Asa ^= Da;
|
||||
BCu = ROL(Asa, 18);
|
||||
Eka = BCa ^((~BCe)& BCi );
|
||||
Eke = BCe ^((~BCi)& BCo );
|
||||
Eki = BCi ^((~BCo)& BCu );
|
||||
Eko = BCo ^((~BCu)& BCa );
|
||||
Eku = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abu ^= Du;
|
||||
BCa = ROL(Abu, 27);
|
||||
Aga ^= Da;
|
||||
BCe = ROL(Aga, 36);
|
||||
Ake ^= De;
|
||||
BCi = ROL(Ake, 10);
|
||||
Ami ^= Di;
|
||||
BCo = ROL(Ami, 15);
|
||||
Aso ^= Do;
|
||||
BCu = ROL_mult8(Aso, 56);
|
||||
Ema = BCa ^((~BCe)& BCi );
|
||||
Eme = BCe ^((~BCi)& BCo );
|
||||
Emi = BCi ^((~BCo)& BCu );
|
||||
Emo = BCo ^((~BCu)& BCa );
|
||||
Emu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abi ^= Di;
|
||||
BCa = ROL(Abi, 62);
|
||||
Ago ^= Do;
|
||||
BCe = ROL(Ago, 55);
|
||||
Aku ^= Du;
|
||||
BCi = ROL(Aku, 39);
|
||||
Ama ^= Da;
|
||||
BCo = ROL(Ama, 41);
|
||||
Ase ^= De;
|
||||
BCu = ROL(Ase, 2);
|
||||
Esa = BCa ^((~BCe)& BCi );
|
||||
Ese = BCe ^((~BCi)& BCo );
|
||||
Esi = BCi ^((~BCo)& BCu );
|
||||
Eso = BCo ^((~BCu)& BCa );
|
||||
Esu = BCu ^((~BCa)& BCe );
|
||||
|
||||
// prepareTheta
|
||||
BCa = Eba^Ega^Eka^Ema^Esa;
|
||||
BCe = Ebe^Ege^Eke^Eme^Ese;
|
||||
BCi = Ebi^Egi^Eki^Emi^Esi;
|
||||
BCo = Ebo^Ego^Eko^Emo^Eso;
|
||||
BCu = Ebu^Egu^Eku^Emu^Esu;
|
||||
|
||||
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
|
||||
Eba ^= Da;
|
||||
BCa = Eba;
|
||||
Ege ^= De;
|
||||
BCe = ROL(Ege, 44);
|
||||
Eki ^= Di;
|
||||
BCi = ROL(Eki, 43);
|
||||
Emo ^= Do;
|
||||
BCo = ROL(Emo, 21);
|
||||
Esu ^= Du;
|
||||
BCu = ROL(Esu, 14);
|
||||
Aba = BCa ^((~BCe)& BCi );
|
||||
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1];
|
||||
Abe = BCe ^((~BCi)& BCo );
|
||||
Abi = BCi ^((~BCo)& BCu );
|
||||
Abo = BCo ^((~BCu)& BCa );
|
||||
Abu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebo ^= Do;
|
||||
BCa = ROL(Ebo, 28);
|
||||
Egu ^= Du;
|
||||
BCe = ROL(Egu, 20);
|
||||
Eka ^= Da;
|
||||
BCi = ROL(Eka, 3);
|
||||
Eme ^= De;
|
||||
BCo = ROL(Eme, 45);
|
||||
Esi ^= Di;
|
||||
BCu = ROL(Esi, 61);
|
||||
Aga = BCa ^((~BCe)& BCi );
|
||||
Age = BCe ^((~BCi)& BCo );
|
||||
Agi = BCi ^((~BCo)& BCu );
|
||||
Ago = BCo ^((~BCu)& BCa );
|
||||
Agu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebe ^= De;
|
||||
BCa = ROL(Ebe, 1);
|
||||
Egi ^= Di;
|
||||
BCe = ROL(Egi, 6);
|
||||
Eko ^= Do;
|
||||
BCi = ROL(Eko, 25);
|
||||
Emu ^= Du;
|
||||
BCo = ROL_mult8(Emu, 8);
|
||||
Esa ^= Da;
|
||||
BCu = ROL(Esa, 18);
|
||||
Aka = BCa ^((~BCe)& BCi );
|
||||
Ake = BCe ^((~BCi)& BCo );
|
||||
Aki = BCi ^((~BCo)& BCu );
|
||||
Ako = BCo ^((~BCu)& BCa );
|
||||
Aku = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebu ^= Du;
|
||||
BCa = ROL(Ebu, 27);
|
||||
Ega ^= Da;
|
||||
BCe = ROL(Ega, 36);
|
||||
Eke ^= De;
|
||||
BCi = ROL(Eke, 10);
|
||||
Emi ^= Di;
|
||||
BCo = ROL(Emi, 15);
|
||||
Eso ^= Do;
|
||||
BCu = ROL_mult8(Eso, 56);
|
||||
Ama = BCa ^((~BCe)& BCi );
|
||||
Ame = BCe ^((~BCi)& BCo );
|
||||
Ami = BCi ^((~BCo)& BCu );
|
||||
Amo = BCo ^((~BCu)& BCa );
|
||||
Amu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebi ^= Di;
|
||||
BCa = ROL(Ebi, 62);
|
||||
Ego ^= Do;
|
||||
BCe = ROL(Ego, 55);
|
||||
Eku ^= Du;
|
||||
BCi = ROL(Eku, 39);
|
||||
Ema ^= Da;
|
||||
BCo = ROL(Ema, 41);
|
||||
Ese ^= De;
|
||||
BCu = ROL(Ese, 2);
|
||||
Asa = BCa ^((~BCe)& BCi );
|
||||
Ase = BCe ^((~BCi)& BCo );
|
||||
Asi = BCi ^((~BCo)& BCu );
|
||||
Aso = BCo ^((~BCu)& BCa );
|
||||
Asu = BCu ^((~BCa)& BCe );
|
||||
}
|
||||
|
||||
if (validate) {
|
||||
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
g_out[3] = Abo;
|
||||
g_out[2] = Abi;
|
||||
g_out[1] = Abe;
|
||||
g_out[0] = Aba;
|
||||
}
|
||||
|
||||
// the likelyhood of meeting the hashing target is so low, that we're not guarding this
|
||||
// with atomic writes, locks or similar...
|
||||
uint64_t *g_good64 = (uint64_t*)g_good;
|
||||
if (Abo <= ptarget64[3]) {
|
||||
if (Abo < g_good64[3]) {
|
||||
g_good64[3] = Abo;
|
||||
g_good64[2] = Abi;
|
||||
g_good64[1] = Abe;
|
||||
g_good64[0] = Aba;
|
||||
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static std::map<int, uint32_t *> context_good[2];
|
||||
|
||||
bool default_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
|
||||
{
|
||||
static bool init[MAX_GPUS] = { 0 };
|
||||
|
||||
if (!init[thr_id])
|
||||
{
|
||||
checkCudaErrors(cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice));
|
||||
|
||||
// allocate pinned host memory for good hashes
|
||||
uint32_t *tmp;
|
||||
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
|
||||
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
|
||||
|
||||
init[thr_id] = true;
|
||||
}
|
||||
checkCudaErrors(cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||
|
||||
return context_good[0][thr_id] && context_good[1][thr_id];
|
||||
}
|
||||
|
||||
void default_do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
|
||||
{
|
||||
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
|
||||
|
||||
crypto_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
|
||||
|
||||
// copy hashes from device memory to host (ALL hashes, lots of data...)
|
||||
if (do_d2h && hash != NULL) {
|
||||
size_t mem_size = throughput * sizeof(uint32_t) * 8;
|
||||
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
|
||||
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
||||
}
|
||||
else if (hash != NULL) {
|
||||
// asynchronous copy of winning nonce (just 4 bytes...)
|
||||
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
|
||||
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
||||
}
|
||||
}
|
||||
|
@ -708,784 +708,3 @@ void nv_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned i
|
||||
|
||||
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//
|
||||
// Maxcoin related Keccak implementation (Keccak256)
|
||||
//
|
||||
|
||||
// from salsa_kernel.cu
|
||||
extern std::map<int, int> context_blocks;
|
||||
extern std::map<int, int> context_wpb;
|
||||
extern std::map<int, KernelInterface *> context_kernel;
|
||||
extern std::map<int, cudaStream_t> context_streams[2];
|
||||
extern std::map<int, uint32_t *> context_hash[2];
|
||||
|
||||
__constant__ uint64_t ptarget64[4];
|
||||
|
||||
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64))))
|
||||
#define ROL_mult8(a, offset) ROL(a, offset)
|
||||
|
||||
__constant__ uint64_t KeccakF_RoundConstants[24];
|
||||
static uint64_t host_KeccakF_RoundConstants[24] = {
|
||||
(uint64_t)0x0000000000000001ULL,
|
||||
(uint64_t)0x0000000000008082ULL,
|
||||
(uint64_t)0x800000000000808aULL,
|
||||
(uint64_t)0x8000000080008000ULL,
|
||||
(uint64_t)0x000000000000808bULL,
|
||||
(uint64_t)0x0000000080000001ULL,
|
||||
(uint64_t)0x8000000080008081ULL,
|
||||
(uint64_t)0x8000000000008009ULL,
|
||||
(uint64_t)0x000000000000008aULL,
|
||||
(uint64_t)0x0000000000000088ULL,
|
||||
(uint64_t)0x0000000080008009ULL,
|
||||
(uint64_t)0x000000008000000aULL,
|
||||
(uint64_t)0x000000008000808bULL,
|
||||
(uint64_t)0x800000000000008bULL,
|
||||
(uint64_t)0x8000000000008089ULL,
|
||||
(uint64_t)0x8000000000008003ULL,
|
||||
(uint64_t)0x8000000000008002ULL,
|
||||
(uint64_t)0x8000000000000080ULL,
|
||||
(uint64_t)0x000000000000800aULL,
|
||||
(uint64_t)0x800000008000000aULL,
|
||||
(uint64_t)0x8000000080008081ULL,
|
||||
(uint64_t)0x8000000000008080ULL,
|
||||
(uint64_t)0x0000000080000001ULL,
|
||||
(uint64_t)0x8000000080008008ULL
|
||||
};
|
||||
|
||||
__constant__ uint64_t pdata64[10];
|
||||
|
||||
static __device__ uint32_t cuda_swab32(uint32_t x)
|
||||
{
|
||||
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
|
||||
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
|
||||
}
|
||||
|
||||
__global__
|
||||
void kepler_crypto_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate )
|
||||
{
|
||||
uint64_t Aba, Abe, Abi, Abo, Abu;
|
||||
uint64_t Aga, Age, Agi, Ago, Agu;
|
||||
uint64_t Aka, Ake, Aki, Ako, Aku;
|
||||
uint64_t Ama, Ame, Ami, Amo, Amu;
|
||||
uint64_t Asa, Ase, Asi, Aso, Asu;
|
||||
uint64_t BCa, BCe, BCi, BCo, BCu;
|
||||
uint64_t Da, De, Di, Do, Du;
|
||||
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
|
||||
uint64_t Ega, Ege, Egi, Ego, Egu;
|
||||
uint64_t Eka, Eke, Eki, Eko, Eku;
|
||||
uint64_t Ema, Eme, Emi, Emo, Emu;
|
||||
uint64_t Esa, Ese, Esi, Eso, Esu;
|
||||
|
||||
//copyFromState(A, state)
|
||||
Aba = pdata64[0];
|
||||
Abe = pdata64[1];
|
||||
Abi = pdata64[2];
|
||||
Abo = pdata64[3];
|
||||
Abu = pdata64[4];
|
||||
Aga = pdata64[5];
|
||||
Age = pdata64[6];
|
||||
Agi = pdata64[7];
|
||||
Ago = pdata64[8];
|
||||
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32);
|
||||
Aka = 0x0000000000000001ULL;
|
||||
Ake = 0;
|
||||
Aki = 0;
|
||||
Ako = 0;
|
||||
Aku = 0;
|
||||
Ama = 0;
|
||||
Ame = 0x8000000000000000ULL;
|
||||
Ami = 0;
|
||||
Amo = 0;
|
||||
Amu = 0;
|
||||
Asa = 0;
|
||||
Ase = 0;
|
||||
Asi = 0;
|
||||
Aso = 0;
|
||||
Asu = 0;
|
||||
|
||||
#pragma unroll 12
|
||||
for( int laneCount = 0; laneCount < 24; laneCount += 2 )
|
||||
{
|
||||
// prepareTheta
|
||||
BCa = Aba^Aga^Aka^Ama^Asa;
|
||||
BCe = Abe^Age^Ake^Ame^Ase;
|
||||
BCi = Abi^Agi^Aki^Ami^Asi;
|
||||
BCo = Abo^Ago^Ako^Amo^Aso;
|
||||
BCu = Abu^Agu^Aku^Amu^Asu;
|
||||
|
||||
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
|
||||
Aba ^= Da;
|
||||
BCa = Aba;
|
||||
Age ^= De;
|
||||
BCe = ROL(Age, 44);
|
||||
Aki ^= Di;
|
||||
BCi = ROL(Aki, 43);
|
||||
Amo ^= Do;
|
||||
BCo = ROL(Amo, 21);
|
||||
Asu ^= Du;
|
||||
BCu = ROL(Asu, 14);
|
||||
Eba = BCa ^((~BCe)& BCi );
|
||||
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount];
|
||||
Ebe = BCe ^((~BCi)& BCo );
|
||||
Ebi = BCi ^((~BCo)& BCu );
|
||||
Ebo = BCo ^((~BCu)& BCa );
|
||||
Ebu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abo ^= Do;
|
||||
BCa = ROL(Abo, 28);
|
||||
Agu ^= Du;
|
||||
BCe = ROL(Agu, 20);
|
||||
Aka ^= Da;
|
||||
BCi = ROL(Aka, 3);
|
||||
Ame ^= De;
|
||||
BCo = ROL(Ame, 45);
|
||||
Asi ^= Di;
|
||||
BCu = ROL(Asi, 61);
|
||||
Ega = BCa ^((~BCe)& BCi );
|
||||
Ege = BCe ^((~BCi)& BCo );
|
||||
Egi = BCi ^((~BCo)& BCu );
|
||||
Ego = BCo ^((~BCu)& BCa );
|
||||
Egu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abe ^= De;
|
||||
BCa = ROL(Abe, 1);
|
||||
Agi ^= Di;
|
||||
BCe = ROL(Agi, 6);
|
||||
Ako ^= Do;
|
||||
BCi = ROL(Ako, 25);
|
||||
Amu ^= Du;
|
||||
BCo = ROL_mult8(Amu, 8);
|
||||
Asa ^= Da;
|
||||
BCu = ROL(Asa, 18);
|
||||
Eka = BCa ^((~BCe)& BCi );
|
||||
Eke = BCe ^((~BCi)& BCo );
|
||||
Eki = BCi ^((~BCo)& BCu );
|
||||
Eko = BCo ^((~BCu)& BCa );
|
||||
Eku = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abu ^= Du;
|
||||
BCa = ROL(Abu, 27);
|
||||
Aga ^= Da;
|
||||
BCe = ROL(Aga, 36);
|
||||
Ake ^= De;
|
||||
BCi = ROL(Ake, 10);
|
||||
Ami ^= Di;
|
||||
BCo = ROL(Ami, 15);
|
||||
Aso ^= Do;
|
||||
BCu = ROL_mult8(Aso, 56);
|
||||
Ema = BCa ^((~BCe)& BCi );
|
||||
Eme = BCe ^((~BCi)& BCo );
|
||||
Emi = BCi ^((~BCo)& BCu );
|
||||
Emo = BCo ^((~BCu)& BCa );
|
||||
Emu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Abi ^= Di;
|
||||
BCa = ROL(Abi, 62);
|
||||
Ago ^= Do;
|
||||
BCe = ROL(Ago, 55);
|
||||
Aku ^= Du;
|
||||
BCi = ROL(Aku, 39);
|
||||
Ama ^= Da;
|
||||
BCo = ROL(Ama, 41);
|
||||
Ase ^= De;
|
||||
BCu = ROL(Ase, 2);
|
||||
Esa = BCa ^((~BCe)& BCi );
|
||||
Ese = BCe ^((~BCi)& BCo );
|
||||
Esi = BCi ^((~BCo)& BCu );
|
||||
Eso = BCo ^((~BCu)& BCa );
|
||||
Esu = BCu ^((~BCa)& BCe );
|
||||
|
||||
// prepareTheta
|
||||
BCa = Eba^Ega^Eka^Ema^Esa;
|
||||
BCe = Ebe^Ege^Eke^Eme^Ese;
|
||||
BCi = Ebi^Egi^Eki^Emi^Esi;
|
||||
BCo = Ebo^Ego^Eko^Emo^Eso;
|
||||
BCu = Ebu^Egu^Eku^Emu^Esu;
|
||||
|
||||
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
|
||||
Da = BCu^ROL(BCe, 1);
|
||||
De = BCa^ROL(BCi, 1);
|
||||
Di = BCe^ROL(BCo, 1);
|
||||
Do = BCi^ROL(BCu, 1);
|
||||
Du = BCo^ROL(BCa, 1);
|
||||
|
||||
Eba ^= Da;
|
||||
BCa = Eba;
|
||||
Ege ^= De;
|
||||
BCe = ROL(Ege, 44);
|
||||
Eki ^= Di;
|
||||
BCi = ROL(Eki, 43);
|
||||
Emo ^= Do;
|
||||
BCo = ROL(Emo, 21);
|
||||
Esu ^= Du;
|
||||
BCu = ROL(Esu, 14);
|
||||
Aba = BCa ^((~BCe)& BCi );
|
||||
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1];
|
||||
Abe = BCe ^((~BCi)& BCo );
|
||||
Abi = BCi ^((~BCo)& BCu );
|
||||
Abo = BCo ^((~BCu)& BCa );
|
||||
Abu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebo ^= Do;
|
||||
BCa = ROL(Ebo, 28);
|
||||
Egu ^= Du;
|
||||
BCe = ROL(Egu, 20);
|
||||
Eka ^= Da;
|
||||
BCi = ROL(Eka, 3);
|
||||
Eme ^= De;
|
||||
BCo = ROL(Eme, 45);
|
||||
Esi ^= Di;
|
||||
BCu = ROL(Esi, 61);
|
||||
Aga = BCa ^((~BCe)& BCi );
|
||||
Age = BCe ^((~BCi)& BCo );
|
||||
Agi = BCi ^((~BCo)& BCu );
|
||||
Ago = BCo ^((~BCu)& BCa );
|
||||
Agu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebe ^= De;
|
||||
BCa = ROL(Ebe, 1);
|
||||
Egi ^= Di;
|
||||
BCe = ROL(Egi, 6);
|
||||
Eko ^= Do;
|
||||
BCi = ROL(Eko, 25);
|
||||
Emu ^= Du;
|
||||
BCo = ROL_mult8(Emu, 8);
|
||||
Esa ^= Da;
|
||||
BCu = ROL(Esa, 18);
|
||||
Aka = BCa ^((~BCe)& BCi );
|
||||
Ake = BCe ^((~BCi)& BCo );
|
||||
Aki = BCi ^((~BCo)& BCu );
|
||||
Ako = BCo ^((~BCu)& BCa );
|
||||
Aku = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebu ^= Du;
|
||||
BCa = ROL(Ebu, 27);
|
||||
Ega ^= Da;
|
||||
BCe = ROL(Ega, 36);
|
||||
Eke ^= De;
|
||||
BCi = ROL(Eke, 10);
|
||||
Emi ^= Di;
|
||||
BCo = ROL(Emi, 15);
|
||||
Eso ^= Do;
|
||||
BCu = ROL_mult8(Eso, 56);
|
||||
Ama = BCa ^((~BCe)& BCi );
|
||||
Ame = BCe ^((~BCi)& BCo );
|
||||
Ami = BCi ^((~BCo)& BCu );
|
||||
Amo = BCo ^((~BCu)& BCa );
|
||||
Amu = BCu ^((~BCa)& BCe );
|
||||
|
||||
Ebi ^= Di;
|
||||
BCa = ROL(Ebi, 62);
|
||||
Ego ^= Do;
|
||||
BCe = ROL(Ego, 55);
|
||||
Eku ^= Du;
|
||||
BCi = ROL(Eku, 39);
|
||||
Ema ^= Da;
|
||||
BCo = ROL(Ema, 41);
|
||||
Ese ^= De;
|
||||
BCu = ROL(Ese, 2);
|
||||
Asa = BCa ^((~BCe)& BCi );
|
||||
Ase = BCe ^((~BCi)& BCo );
|
||||
Asi = BCi ^((~BCo)& BCu );
|
||||
Aso = BCo ^((~BCu)& BCa );
|
||||
Asu = BCu ^((~BCa)& BCe );
|
||||
}
|
||||
|
||||
if (validate) {
|
||||
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
g_out[3] = Abo;
|
||||
g_out[2] = Abi;
|
||||
g_out[1] = Abe;
|
||||
g_out[0] = Aba;
|
||||
}
|
||||
|
||||
// the likelyhood of meeting the hashing target is so low, that we're not guarding this
|
||||
// with atomic writes, locks or similar...
|
||||
uint64_t *g_good64 = (uint64_t*)g_good;
|
||||
if (Abo <= ptarget64[3]) {
|
||||
if (Abo < g_good64[3]) {
|
||||
g_good64[3] = Abo;
|
||||
g_good64[2] = Abi;
|
||||
g_good64[1] = Abe;
|
||||
g_good64[0] = Aba;
|
||||
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static std::map<int, uint32_t *> context_good[2];
|
||||
|
||||
bool NVKernel::prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
|
||||
{
|
||||
static bool init[MAX_GPUS] = { 0 };
|
||||
|
||||
if (!init[thr_id])
|
||||
{
|
||||
checkCudaErrors(cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice));
|
||||
|
||||
// allocate pinned host memory for good hashes
|
||||
uint32_t *tmp;
|
||||
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
|
||||
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
|
||||
|
||||
init[thr_id] = true;
|
||||
}
|
||||
checkCudaErrors(cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||
|
||||
return context_good[0][thr_id] && context_good[1][thr_id];
|
||||
}
|
||||
|
||||
void NVKernel::do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
|
||||
{
|
||||
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
|
||||
|
||||
kepler_crypto_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
|
||||
|
||||
// copy hashes from device memory to host (ALL hashes, lots of data...)
|
||||
if (do_d2h && hash != NULL) {
|
||||
size_t mem_size = throughput * sizeof(uint32_t) * 8;
|
||||
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
|
||||
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
||||
}
|
||||
else if (hash != NULL) {
|
||||
// asynchronous copy of winning nonce (just 4 bytes...)
|
||||
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
|
||||
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Blakecoin related Keccak implementation (Keccak256)
|
||||
//
|
||||
|
||||
typedef uint32_t sph_u32;
|
||||
#define SPH_C32(x) ((sph_u32)(x))
|
||||
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
|
||||
#if __CUDA_ARCH__ < 350
|
||||
// Kepler (Compute 3.0)
|
||||
#define SPH_ROTL32(a, b) ((a)<<(b))|((a)>>(32-(b)))
|
||||
#else
|
||||
// Kepler (Compute 3.5)
|
||||
#define SPH_ROTL32(a, b) __funnelshift_l( a, a, b );
|
||||
#endif
|
||||
#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n)))
|
||||
|
||||
__constant__ uint32_t pdata[20];
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning (disable: 4146)
|
||||
#endif
|
||||
|
||||
static __device__ sph_u32 cuda_sph_bswap32(sph_u32 x)
|
||||
{
|
||||
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
|
||||
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
|
||||
}
|
||||
|
||||
/**
|
||||
* Encode a 32-bit value into the provided buffer (big endian convention).
|
||||
*
|
||||
* @param dst the destination buffer
|
||||
* @param val the 32-bit value to encode
|
||||
*/
|
||||
static __device__ void
|
||||
cuda_sph_enc32be(void *dst, sph_u32 val)
|
||||
{
|
||||
*(sph_u32 *)dst = cuda_sph_bswap32(val);
|
||||
}
|
||||
|
||||
#define Z00 0
|
||||
#define Z01 1
|
||||
#define Z02 2
|
||||
#define Z03 3
|
||||
#define Z04 4
|
||||
#define Z05 5
|
||||
#define Z06 6
|
||||
#define Z07 7
|
||||
#define Z08 8
|
||||
#define Z09 9
|
||||
#define Z0A A
|
||||
#define Z0B B
|
||||
#define Z0C C
|
||||
#define Z0D D
|
||||
#define Z0E E
|
||||
#define Z0F F
|
||||
|
||||
#define Z10 E
|
||||
#define Z11 A
|
||||
#define Z12 4
|
||||
#define Z13 8
|
||||
#define Z14 9
|
||||
#define Z15 F
|
||||
#define Z16 D
|
||||
#define Z17 6
|
||||
#define Z18 1
|
||||
#define Z19 C
|
||||
#define Z1A 0
|
||||
#define Z1B 2
|
||||
#define Z1C B
|
||||
#define Z1D 7
|
||||
#define Z1E 5
|
||||
#define Z1F 3
|
||||
|
||||
#define Z20 B
|
||||
#define Z21 8
|
||||
#define Z22 C
|
||||
#define Z23 0
|
||||
#define Z24 5
|
||||
#define Z25 2
|
||||
#define Z26 F
|
||||
#define Z27 D
|
||||
#define Z28 A
|
||||
#define Z29 E
|
||||
#define Z2A 3
|
||||
#define Z2B 6
|
||||
#define Z2C 7
|
||||
#define Z2D 1
|
||||
#define Z2E 9
|
||||
#define Z2F 4
|
||||
|
||||
#define Z30 7
|
||||
#define Z31 9
|
||||
#define Z32 3
|
||||
#define Z33 1
|
||||
#define Z34 D
|
||||
#define Z35 C
|
||||
#define Z36 B
|
||||
#define Z37 E
|
||||
#define Z38 2
|
||||
#define Z39 6
|
||||
#define Z3A 5
|
||||
#define Z3B A
|
||||
#define Z3C 4
|
||||
#define Z3D 0
|
||||
#define Z3E F
|
||||
#define Z3F 8
|
||||
|
||||
#define Z40 9
|
||||
#define Z41 0
|
||||
#define Z42 5
|
||||
#define Z43 7
|
||||
#define Z44 2
|
||||
#define Z45 4
|
||||
#define Z46 A
|
||||
#define Z47 F
|
||||
#define Z48 E
|
||||
#define Z49 1
|
||||
#define Z4A B
|
||||
#define Z4B C
|
||||
#define Z4C 6
|
||||
#define Z4D 8
|
||||
#define Z4E 3
|
||||
#define Z4F D
|
||||
|
||||
#define Z50 2
|
||||
#define Z51 C
|
||||
#define Z52 6
|
||||
#define Z53 A
|
||||
#define Z54 0
|
||||
#define Z55 B
|
||||
#define Z56 8
|
||||
#define Z57 3
|
||||
#define Z58 4
|
||||
#define Z59 D
|
||||
#define Z5A 7
|
||||
#define Z5B 5
|
||||
#define Z5C F
|
||||
#define Z5D E
|
||||
#define Z5E 1
|
||||
#define Z5F 9
|
||||
|
||||
#define Z60 C
|
||||
#define Z61 5
|
||||
#define Z62 1
|
||||
#define Z63 F
|
||||
#define Z64 E
|
||||
#define Z65 D
|
||||
#define Z66 4
|
||||
#define Z67 A
|
||||
#define Z68 0
|
||||
#define Z69 7
|
||||
#define Z6A 6
|
||||
#define Z6B 3
|
||||
#define Z6C 9
|
||||
#define Z6D 2
|
||||
#define Z6E 8
|
||||
#define Z6F B
|
||||
|
||||
#define Z70 D
|
||||
#define Z71 B
|
||||
#define Z72 7
|
||||
#define Z73 E
|
||||
#define Z74 C
|
||||
#define Z75 1
|
||||
#define Z76 3
|
||||
#define Z77 9
|
||||
#define Z78 5
|
||||
#define Z79 0
|
||||
#define Z7A F
|
||||
#define Z7B 4
|
||||
#define Z7C 8
|
||||
#define Z7D 6
|
||||
#define Z7E 2
|
||||
#define Z7F A
|
||||
|
||||
#define Z80 6
|
||||
#define Z81 F
|
||||
#define Z82 E
|
||||
#define Z83 9
|
||||
#define Z84 B
|
||||
#define Z85 3
|
||||
#define Z86 0
|
||||
#define Z87 8
|
||||
#define Z88 C
|
||||
#define Z89 2
|
||||
#define Z8A D
|
||||
#define Z8B 7
|
||||
#define Z8C 1
|
||||
#define Z8D 4
|
||||
#define Z8E A
|
||||
#define Z8F 5
|
||||
|
||||
#define Z90 A
|
||||
#define Z91 2
|
||||
#define Z92 8
|
||||
#define Z93 4
|
||||
#define Z94 7
|
||||
#define Z95 6
|
||||
#define Z96 1
|
||||
#define Z97 5
|
||||
#define Z98 F
|
||||
#define Z99 B
|
||||
#define Z9A 9
|
||||
#define Z9B E
|
||||
#define Z9C 3
|
||||
#define Z9D C
|
||||
#define Z9E D
|
||||
#define Z9F 0
|
||||
|
||||
#define Mx(r, i) Mx_(Z ## r ## i)
|
||||
#define Mx_(n) Mx__(n)
|
||||
#define Mx__(n) M ## n
|
||||
|
||||
#define CSx(r, i) CSx_(Z ## r ## i)
|
||||
#define CSx_(n) CSx__(n)
|
||||
#define CSx__(n) CS ## n
|
||||
|
||||
#define CS0 SPH_C32(0x243F6A88)
|
||||
#define CS1 SPH_C32(0x85A308D3)
|
||||
#define CS2 SPH_C32(0x13198A2E)
|
||||
#define CS3 SPH_C32(0x03707344)
|
||||
#define CS4 SPH_C32(0xA4093822)
|
||||
#define CS5 SPH_C32(0x299F31D0)
|
||||
#define CS6 SPH_C32(0x082EFA98)
|
||||
#define CS7 SPH_C32(0xEC4E6C89)
|
||||
#define CS8 SPH_C32(0x452821E6)
|
||||
#define CS9 SPH_C32(0x38D01377)
|
||||
#define CSA SPH_C32(0xBE5466CF)
|
||||
#define CSB SPH_C32(0x34E90C6C)
|
||||
#define CSC SPH_C32(0xC0AC29B7)
|
||||
#define CSD SPH_C32(0xC97C50DD)
|
||||
#define CSE SPH_C32(0x3F84D5B5)
|
||||
#define CSF SPH_C32(0xB5470917)
|
||||
|
||||
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
|
||||
a = SPH_T32(a + b + (m0 ^ c1)); \
|
||||
d = SPH_ROTR32(d ^ a, 16); \
|
||||
c = SPH_T32(c + d); \
|
||||
b = SPH_ROTR32(b ^ c, 12); \
|
||||
a = SPH_T32(a + b + (m1 ^ c0)); \
|
||||
d = SPH_ROTR32(d ^ a, 8); \
|
||||
c = SPH_T32(c + d); \
|
||||
b = SPH_ROTR32(b ^ c, 7); \
|
||||
} while (0)
|
||||
|
||||
#define ROUND_S(r) do { \
|
||||
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
|
||||
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
|
||||
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
|
||||
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
|
||||
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
|
||||
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
|
||||
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
|
||||
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
|
||||
} while (0)
|
||||
|
||||
#define COMPRESS32 do { \
|
||||
sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \
|
||||
sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = S0 ^ CS0; \
|
||||
V9 = S1 ^ CS1; \
|
||||
VA = S2 ^ CS2; \
|
||||
VB = S3 ^ CS3; \
|
||||
VC = T0 ^ CS4; \
|
||||
VD = T0 ^ CS5; \
|
||||
VE = T1 ^ CS6; \
|
||||
VF = T1 ^ CS7; \
|
||||
M0 = input[0]; \
|
||||
M1 = input[1]; \
|
||||
M2 = input[2]; \
|
||||
M3 = input[3]; \
|
||||
M4 = input[4]; \
|
||||
M5 = input[5]; \
|
||||
M6 = input[6]; \
|
||||
M7 = input[7]; \
|
||||
M8 = input[8]; \
|
||||
M9 = input[9]; \
|
||||
MA = input[10]; \
|
||||
MB = input[11]; \
|
||||
MC = input[12]; \
|
||||
MD = input[13]; \
|
||||
ME = input[14]; \
|
||||
MF = input[15]; \
|
||||
ROUND_S(0); \
|
||||
ROUND_S(1); \
|
||||
ROUND_S(2); \
|
||||
ROUND_S(3); \
|
||||
ROUND_S(4); \
|
||||
ROUND_S(5); \
|
||||
ROUND_S(6); \
|
||||
ROUND_S(7); \
|
||||
H0 ^= S0 ^ V0 ^ V8; \
|
||||
H1 ^= S1 ^ V1 ^ V9; \
|
||||
H2 ^= S2 ^ V2 ^ VA; \
|
||||
H3 ^= S3 ^ V3 ^ VB; \
|
||||
H4 ^= S0 ^ V4 ^ VC; \
|
||||
H5 ^= S1 ^ V5 ^ VD; \
|
||||
H6 ^= S2 ^ V6 ^ VE; \
|
||||
H7 ^= S3 ^ V7 ^ VF; \
|
||||
} while (0)
|
||||
|
||||
|
||||
__global__
|
||||
void kepler_blake256_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate)
|
||||
{
|
||||
uint32_t input[16];
|
||||
uint64_t output[4];
|
||||
|
||||
#pragma unroll
|
||||
for (int i=0; i < 16; ++i) input[i] = pdata[i];
|
||||
|
||||
sph_u32 H0 = 0x6A09E667;
|
||||
sph_u32 H1 = 0xBB67AE85;
|
||||
sph_u32 H2 = 0x3C6EF372;
|
||||
sph_u32 H3 = 0xA54FF53A;
|
||||
sph_u32 H4 = 0x510E527F;
|
||||
sph_u32 H5 = 0x9B05688C;
|
||||
sph_u32 H6 = 0x1F83D9AB;
|
||||
sph_u32 H7 = 0x5BE0CD19;
|
||||
sph_u32 S0 = 0;
|
||||
sph_u32 S1 = 0;
|
||||
sph_u32 S2 = 0;
|
||||
sph_u32 S3 = 0;
|
||||
sph_u32 T0 = 0;
|
||||
sph_u32 T1 = 0;
|
||||
T0 = SPH_T32(T0 + 512);
|
||||
COMPRESS32;
|
||||
|
||||
#pragma unroll
|
||||
for (int i=0; i < 3; ++i) input[i] = pdata[16+i];
|
||||
|
||||
input[3] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
input[4] = 0x80000000;
|
||||
|
||||
#pragma unroll 8
|
||||
for (int i=5; i < 13; ++i) input[i] = 0;
|
||||
|
||||
input[13] = 0x00000001;
|
||||
input[14] = T1;
|
||||
input[15] = T0 + 128;
|
||||
|
||||
T0 = SPH_T32(T0 + 128);
|
||||
COMPRESS32;
|
||||
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*6, H6);
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*7, H7);
|
||||
if (validate || output[3] <= ptarget64[3])
|
||||
{
|
||||
// this data is only needed when we actually need to save the hashes
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*0, H0);
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*1, H1);
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*2, H2);
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*3, H3);
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*4, H4);
|
||||
cuda_sph_enc32be((unsigned char*)output + 4*5, H5);
|
||||
}
|
||||
|
||||
if (validate)
|
||||
{
|
||||
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
#pragma unroll
|
||||
for (int i=0; i < 4; ++i) g_out[i] = output[i];
|
||||
}
|
||||
|
||||
if (output[3] <= ptarget64[3]) {
|
||||
uint64_t *g_good64 = (uint64_t*)g_good;
|
||||
if (output[3] < g_good64[3]) {
|
||||
g_good64[3] = output[3];
|
||||
g_good64[2] = output[2];
|
||||
g_good64[1] = output[1];
|
||||
g_good64[0] = output[0];
|
||||
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool NVKernel::prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
|
||||
{
|
||||
static bool init[MAX_GPUS] = { 0 };
|
||||
|
||||
if (!init[thr_id])
|
||||
{
|
||||
// allocate pinned host memory for good hashes
|
||||
uint32_t *tmp;
|
||||
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
|
||||
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
|
||||
|
||||
init[thr_id] = true;
|
||||
}
|
||||
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
|
||||
|
||||
return context_good[0][thr_id] && context_good[1][thr_id];
|
||||
}
|
||||
|
||||
void NVKernel::do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
|
||||
{
|
||||
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
|
||||
|
||||
kepler_blake256_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
|
||||
|
||||
// copy hashes from device memory to host (ALL hashes, lots of data...)
|
||||
if (do_d2h && hash != NULL) {
|
||||
size_t mem_size = throughput * sizeof(uint32_t) * 8;
|
||||
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
|
||||
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
||||
}
|
||||
else if (hash != NULL) {
|
||||
// asynchronous copy of winning nonce (just 4 bytes...)
|
||||
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
|
||||
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
||||
}
|
||||
}
|
||||
|
@ -25,12 +25,6 @@ public:
|
||||
virtual bool support_lookup_gap() { return true; }
|
||||
virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeFourByte; }
|
||||
virtual cudaFuncCache cache_config() { return cudaFuncCachePreferL1; }
|
||||
|
||||
virtual bool prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
|
||||
virtual void do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
|
||||
|
||||
virtual bool prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8]);
|
||||
virtual void do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
|
||||
};
|
||||
|
||||
#endif // #ifndef NV_KERNEL_H
|
||||
|
1091
scrypt/nv_kernel2.cu
1091
scrypt/nv_kernel2.cu
File diff suppressed because it is too large
Load Diff
@ -25,12 +25,6 @@ public:
|
||||
|
||||
virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeFourByte; }
|
||||
virtual cudaFuncCache cache_config() { return cudaFuncCachePreferL1; }
|
||||
|
||||
virtual bool prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
|
||||
virtual void do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
|
||||
|
||||
virtual bool prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8]);
|
||||
virtual void do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false);
|
||||
};
|
||||
|
||||
#endif // #ifndef NV2_KERNEL_H
|
||||
|
@ -821,44 +821,6 @@ void cuda_scrypt_core(int thr_id, int stream, unsigned int N)
|
||||
);
|
||||
}
|
||||
|
||||
bool cuda_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8])
|
||||
{
|
||||
return context_kernel[thr_id]->prepare_keccak256(thr_id, host_pdata, ptarget);
|
||||
}
|
||||
#if 0
|
||||
void cuda_do_keccak256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
|
||||
{
|
||||
unsigned int GRID_BLOCKS = context_blocks[thr_id];
|
||||
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
|
||||
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
|
||||
|
||||
// setup execution parameters
|
||||
dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1);
|
||||
dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1);
|
||||
|
||||
context_kernel[thr_id]->do_keccak256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
|
||||
}
|
||||
#endif
|
||||
bool cuda_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8])
|
||||
{
|
||||
return context_kernel[thr_id]->prepare_blake256(thr_id, host_pdata, ptarget);
|
||||
}
|
||||
|
||||
#if 0
|
||||
void cuda_do_blake256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
|
||||
{
|
||||
unsigned int GRID_BLOCKS = context_blocks[thr_id];
|
||||
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
|
||||
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
|
||||
|
||||
// setup execution parameters
|
||||
dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1);
|
||||
dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1);
|
||||
|
||||
context_kernel[thr_id]->do_blake256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
|
||||
}
|
||||
#endif
|
||||
|
||||
void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA)
|
||||
{
|
||||
unsigned int GRID_BLOCKS = context_blocks[thr_id];
|
||||
|
@ -58,20 +58,6 @@ extern void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA);
|
||||
extern bool cuda_scrypt_sync(int thr_id, int stream);
|
||||
extern void cuda_scrypt_flush(int thr_id, int stream);
|
||||
|
||||
extern bool cuda_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
|
||||
extern void cuda_do_keccak256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
|
||||
|
||||
extern bool cuda_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
|
||||
extern void cuda_do_blake256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
|
||||
|
||||
extern bool default_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
|
||||
extern bool default_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]);
|
||||
|
||||
#ifdef __NVCC__
|
||||
extern void default_do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
|
||||
extern void default_do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h);
|
||||
#endif
|
||||
|
||||
// If we're in C++ mode, we're either compiling .cu files or scrypt.cpp
|
||||
|
||||
#ifdef __NVCC__
|
||||
@ -101,20 +87,6 @@ public:
|
||||
virtual bool support_lookup_gap() { return false; }
|
||||
virtual cudaSharedMemConfig shared_mem_config() { return cudaSharedMemBankSizeDefault; }
|
||||
virtual cudaFuncCache cache_config() { return cudaFuncCachePreferNone; }
|
||||
|
||||
virtual bool prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]) {
|
||||
return default_prepare_keccak256(thr_id, host_pdata, ptarget);
|
||||
}
|
||||
virtual void do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false) {
|
||||
default_do_keccak256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
|
||||
}
|
||||
|
||||
virtual bool prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t ptarget[8]) {
|
||||
return default_prepare_blake256(thr_id, host_pdata, ptarget);
|
||||
}
|
||||
virtual void do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h = false) {
|
||||
default_do_blake256(grid, threads, thr_id, stream, hash, nonce, throughput, do_d2h);
|
||||
}
|
||||
};
|
||||
|
||||
// Not performing error checking is actually bad, but...
|
||||
|
Loading…
x
Reference in New Issue
Block a user