1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-13 16:27:57 +00:00

simd: add support for SM 2.1 devices

Add support for x11..x17, s3, fresh and qubit

Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
This commit is contained in:
Tanguy Pruvot 2015-11-01 12:10:12 +01:00
parent 03b2bddc16
commit 0d9d3520ac
13 changed files with 696 additions and 61 deletions

View File

@ -89,7 +89,7 @@ extern "C" int scanhash_jackpot(int thr_id, struct work *work, uint32_t max_nonc
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x000f;
ptarget[7] = 0x000f;
if (!init[thr_id])
{
@ -100,7 +100,6 @@ extern "C" int scanhash_jackpot(int thr_id, struct work *work, uint32_t max_nonc
proper_exit(EXIT_CODE_CUDA_ERROR);
}
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
jackpot_keccak512_cpu_init(thr_id, throughput);

View File

@ -100,16 +100,12 @@ bool bench_algo_switch_next(int thr_id)
if (device_sm[dev_id] && device_sm[dev_id] < 300) {
// incompatible SM 2.1 kernels...
if (algo == ALGO_FRESH) algo++;
if (algo == ALGO_GROESTL) algo++;
if (algo == ALGO_MYR_GR) algo++;
if (algo == ALGO_JACKPOT) algo++;
if (algo == ALGO_JACKPOT) algo++; // compact shuffle
if (algo == ALGO_LYRA2v2) algo++;
if (algo == ALGO_NEOSCRYPT) algo++;
if (algo == ALGO_QUARK) algo++;
if (algo == ALGO_QUBIT) algo++;
if (algo == ALGO_S3) algo++; // to check...
while (algo >= ALGO_X11 && algo <= ALGO_X17) algo++;
if (algo == ALGO_QUARK) algo++; // todo
if (algo == ALGO_WHIRLPOOLX) algo++;
}
// and unwanted ones...

View File

@ -251,6 +251,7 @@
<ClCompile Include="neoscrypt\neoscrypt.cpp" />
<ClCompile Include="neoscrypt\neoscrypt-cpu.c" />
<ClInclude Include="neoscrypt\cuda_vectors.h" />
<ClInclude Include="x11\cuda_x11_simd512_sm2.cuh" />
<CudaCompile Include="Algo256\bmw.cu" />
<CudaCompile Include="Algo256\cuda_bmw.cu">
<MaxRegCount>76</MaxRegCount>
@ -463,9 +464,7 @@
<CudaCompile Include="cuda_skeincoin.cu">
<MaxRegCount>48</MaxRegCount>
</CudaCompile>
<CudaCompile Include="x11\cuda_x11_aes.cu">
<ExcludedFromBuild>true</ExcludedFromBuild>
</CudaCompile>
<ClInclude Include="x11\cuda_x11_aes.cuh" />
<CudaCompile Include="x11\cuda_x11_cubehash512.cu" />
<CudaCompile Include="x11\cuda_x11_echo.cu">
</CudaCompile>
@ -476,15 +475,13 @@
<CudaCompile Include="x11\cuda_x11_shavite512.cu">
<MaxRegCount>128</MaxRegCount>
</CudaCompile>
<ClInclude Include="x11\cuda_x11_simd512_func.cuh" />
<CudaCompile Include="x11\cuda_x11_simd512.cu">
<MaxRegCount>64</MaxRegCount>
</CudaCompile>
<CudaCompile Include="x11\c11.cu" />
<CudaCompile Include="x11\fresh.cu" />
<CudaCompile Include="x11\s3.cu" />
<CudaCompile Include="x11\simd_functions.cu">
<ExcludedFromBuild>true</ExcludedFromBuild>
</CudaCompile>
<CudaCompile Include="x11\x11.cu">
</CudaCompile>
<CudaCompile Include="x13\cuda_x13_hamsi512.cu">
@ -530,4 +527,4 @@
<Target Name="AfterClean">
<Delete Files="@(FilesToCopy->'$(OutDir)%(Filename)%(Extension)')" TreatErrorsAsWarnings="true" />
</Target>
</Project>
</Project>

View File

@ -443,6 +443,9 @@
<ClInclude Include="quark\cuda_bmw512_sm3.cuh">
<Filter>Source Files\CUDA\quark</Filter>
</ClInclude>
<ClInclude Include="x11\cuda_x11_simd512_sm2.cuh">
<Filter>Source Files\CUDA\x11</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<CudaCompile Include="cuda.cpp">
@ -523,9 +526,9 @@
<CudaCompile Include="cuda_nist5.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="x11\cuda_x11_aes.cu">
<ClInclude Include="x11\cuda_x11_aes.cuh">
<Filter>Source Files\CUDA\x11</Filter>
</CudaCompile>
</ClInclude>
<CudaCompile Include="x11\cuda_x11_cubehash512.cu">
<Filter>Source Files\CUDA\x11</Filter>
</CudaCompile>
@ -544,6 +547,9 @@
<CudaCompile Include="x11\cuda_x11_simd512.cu">
<Filter>Source Files\CUDA\x11</Filter>
</CudaCompile>
<ClInclude Include="x11\cuda_x11_simd512_func.cuh">
<Filter>Source Files\CUDA\x11</Filter>
</ClInclude>
<CudaCompile Include="x11\c11.cu">
<Filter>Source Files\CUDA\x11</Filter>
</CudaCompile>
@ -553,9 +559,6 @@
<CudaCompile Include="x11\x11.cu">
<Filter>Source Files\CUDA\x11</Filter>
</CudaCompile>
<CudaCompile Include="x11\simd_functions.cu">
<Filter>Source Files\CUDA\x11</Filter>
</CudaCompile>
<CudaCompile Include="x13\cuda_x13_fugue512.cu">
<Filter>Source Files\CUDA\x13</Filter>
</CudaCompile>
@ -707,4 +710,4 @@
<Filter>Ressources</Filter>
</Text>
</ItemGroup>
</Project>
</Project>

View File

@ -360,6 +360,7 @@ bool parse_pool_array(json_t *obj)
void pool_dump_infos()
{
struct pool_infos *p;
if (opt_benchmark) return;
for (int i=0; i<num_pools; i++) {
p = &pools[i];
applog(LOG_DEBUG, "POOL %01d: %s USER %s -s %d", i,

View File

@ -3,7 +3,7 @@
#include "cuda_helper.h"
#include "cuda_x11_aes.cu"
#include "cuda_x11_aes.cuh"
__device__ __forceinline__ void AES_2ROUND(
const uint32_t* __restrict__ sharedMemory,

View File

@ -6,7 +6,7 @@
__constant__ uint32_t c_PaddedMessage80[32]; // padded message (80 bytes + padding)
#include "cuda_x11_aes.cu"
#include "cuda_x11_aes.cuh"
__device__ __forceinline__
static void AES_ROUND_NOKEY(
@ -1403,7 +1403,7 @@ void x11_shavite512_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *ou
{
const uint32_t nounce = startNounce + thread;
// kopiere init-state
// initial state
uint32_t state[16] = {
SPH_C32(0x72FCCDD8), SPH_C32(0x79CA4727), SPH_C32(0x128A077B), SPH_C32(0x40D55AEC),
SPH_C32(0xD1901A06), SPH_C32(0x430AE307), SPH_C32(0xB29F5CD1), SPH_C32(0xDF07FBFC),
@ -1441,6 +1441,7 @@ void x11_shavite512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNoun
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// note: 128 threads minimum are required to init the shared memory array
x11_shavite512_gpu_hash_64<<<grid, block>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
//MyStreamSynchronize(NULL, order, thr_id);
}
@ -1465,8 +1466,8 @@ void x11_shavite512_cpu_init(int thr_id, uint32_t threads)
__host__
void x11_shavite512_setBlock_80(void *pdata)
{
// Message mit Padding bereitstellen
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen.
// Message with Padding
// The nonce is at Byte 76.
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 48);

View File

@ -5,11 +5,11 @@
//
// STEP8_IF and STEP8_MAJ beinhalten je 2x 8-fach parallel Operations
#define TPB 128
#include "miner.h"
#include "cuda_helper.h"
#define TPB 128
uint32_t *d_state[MAX_GPUS];
uint4 *d_temp4[MAX_GPUS];
@ -34,7 +34,7 @@ const uint8_t h_perm[8][8] = {
{ 4, 5, 2, 3, 6, 7, 0, 1 }
};
/* for simd_functions.cu */
/* for simd_functions.cuh */
#ifdef DEVICE_DIRECT_CONSTANTS
__constant__ uint32_t c_IV_512[32] = {
#else
@ -87,15 +87,23 @@ static const short h_FFT256_2_128_Twiddle[128] = {
-30, 55, -58, -65, -95, -40, -98, 94
};
#include "cuda_x11_simd512_sm2.cuh"
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 500
#endif
/************* the round function ****************/
#undef IF
#undef MAJ
#define IF(x, y, z) (((y ^ z) & x) ^ z)
#define MAJ(x, y, z) ((z &y) | ((z|y) & x))
#include "x11/cuda_x11_simd512_func.cuh"
#include "x11/simd_functions.cu"
#if __CUDA_ARCH__ >= 300
/********************* Message expansion ************************/
@ -347,7 +355,6 @@ void FFT_256_halfzero(int y[256])
FFT_128_full(y+16);
}
/***************************************************/
__device__ __forceinline__
@ -643,10 +650,23 @@ void x11_simd512_gpu_final_64(uint32_t threads, uint32_t *g_hash, uint4 *g_fft4,
}
}
#else
__global__ void x11_simd512_gpu_expand_64(uint32_t threads, uint32_t *g_hash, uint4 *g_temp4) {}
__global__ void x11_simd512_gpu_compress1_64(uint32_t threads, uint32_t *g_hash, uint4 *g_fft4, uint32_t *g_state) {}
__global__ void x11_simd512_gpu_compress2_64(uint32_t threads, uint4 *g_fft4, uint32_t *g_state) {}
__global__ void x11_simd512_gpu_compress_64_maxwell(uint32_t threads, uint32_t *g_hash, uint4 *g_fft4, uint32_t *g_state) {}
__global__ void x11_simd512_gpu_final_64(uint32_t threads, uint32_t *g_hash, uint4 *g_fft4, uint32_t *g_state) {}
#endif /* SM3+ */
__host__
int x11_simd512_cpu_init(int thr_id, uint32_t threads)
{
int dev_id = device_map[thr_id];
cuda_get_arch(thr_id);
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
x11_simd512_cpu_init_sm2(thr_id);
return 0;
}
CUDA_CALL_OR_RET_X(cudaMalloc(&d_temp4[thr_id], 64*sizeof(uint4)*threads), (int) err); /* todo: prevent -i 21 */
CUDA_CALL_OR_RET_X(cudaMalloc(&d_state[thr_id], 32*sizeof(int)*threads), (int) err);
@ -656,10 +676,13 @@ int x11_simd512_cpu_init(int thr_id, uint32_t threads)
cudaMemcpyToSymbol(c_FFT128_8_16_Twiddle, h_FFT128_8_16_Twiddle, sizeof(h_FFT128_8_16_Twiddle), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_FFT256_2_128_Twiddle, h_FFT256_2_128_Twiddle, sizeof(h_FFT256_2_128_Twiddle), 0, cudaMemcpyHostToDevice);
#endif
#if 0
cudaMemcpyToSymbol(d_cw0, h_cw0, sizeof(h_cw0), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw1, h_cw1, sizeof(h_cw1), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw2, h_cw2, sizeof(h_cw2), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(d_cw3, h_cw3, sizeof(h_cw3), 0, cudaMemcpyHostToDevice);
#endif
// Texture for 128-Bit Zugriffe
cudaChannelFormatDesc channelDesc128 = cudaCreateChannelDesc<uint4>();
@ -675,27 +698,31 @@ int x11_simd512_cpu_init(int thr_id, uint32_t threads)
__host__
void x11_simd512_cpu_free(int thr_id)
{
cudaFree(d_temp4[thr_id]);
cudaFree(d_state[thr_id]);
int dev_id = device_map[thr_id];
if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300) {
cudaFree(d_temp4[thr_id]);
cudaFree(d_state[thr_id]);
}
}
__host__
void x11_simd512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const uint32_t threadsperblock = TPB;
int dev_id = device_map[thr_id];
dim3 block(threadsperblock);
dim3 grid((threads + threadsperblock-1) / threadsperblock);
dim3 gridX8(grid.x * 8);
if (d_nonceVector != NULL) {
applog(LOG_ERR, "Sorry, nonce Vector param was removed!");
if (d_nonceVector != NULL || device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
x11_simd512_cpu_hash_64_sm2(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
return;
}
x11_simd512_gpu_expand_64 <<<gridX8, block>>> (threads, d_hash, d_temp4[thr_id]);
if (device_sm[device_map[thr_id]] >= 500 && cuda_arch[device_map[thr_id]] >= 500) {
if (device_sm[dev_id] >= 500 && cuda_arch[dev_id] >= 500) {
x11_simd512_gpu_compress_64_maxwell <<< grid, block >>> (threads, d_hash, d_temp4[thr_id], d_state[thr_id]);
} else {
x11_simd512_gpu_compress1_64 <<< grid, block >>> (threads, d_hash, d_temp4[thr_id], d_state[thr_id]);

View File

@ -1,3 +1,5 @@
#define SIMD_FUNCTIONS_CUH
__device__ __forceinline__ void STEP8_IF_0(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
{
uint32_t temp;
@ -1043,8 +1045,9 @@ __device__ __forceinline__ void STEP8_IF_35(const uint32_t *w, const int r, cons
A[j] = R[j];
}
}
static __constant__ uint32_t d_cw0[8][8];
static const uint32_t h_cw0[8][8] = {
static __constant__ uint32_t d_cw0[8][8] = {
//static const uint32_t h_cw0[8][8] = {
0x531B1720, 0xAC2CDE09, 0x0B902D87, 0x2369B1F4, 0x2931AA01, 0x02E4B082, 0xC914C914, 0xC1DAE1A6,
0xF18C2B5C, 0x08AC306B, 0x27BFC914, 0xCEDC548D, 0xC630C4BE, 0xF18C4335, 0xF0D3427C, 0xBE3DA380,
0x143C02E4, 0xA948C630, 0xA4F2DE09, 0xA71D2085, 0xA439BD84, 0x109FCD6A, 0xEEA8EF61, 0xA5AB1CE8,
@ -1054,10 +1057,9 @@ static const uint32_t h_cw0[8][8] = {
0x213E50F0, 0x39173EDF, 0xA9485B0E, 0xEEA82EF9, 0x14F55771, 0xFAF15546, 0x3D6DD9B3, 0xAB73B92E,
0x582A48FD, 0xEEA81892, 0x4F7EAA01, 0xAF10A88F, 0x11581720, 0x34C124DB, 0xD1C0AB73, 0x1E5AF0D3
};
__device__ __forceinline__ void Round8_0_final(uint32_t *A,
int r, int s, int t, int u) {
__device__ __forceinline__ void Round8_0_final(uint32_t *A, int r, int s, int t, int u)
{
STEP8_IF_0(d_cw0[0], r, s, A, &A[8], &A[16], &A[24]);
STEP8_IF_1(d_cw0[1], s, t, &A[24], A, &A[8], &A[16]);
STEP8_IF_2(d_cw0[2], t, u, &A[16], &A[24], A, &A[8]);
@ -1067,8 +1069,9 @@ __device__ __forceinline__ void Round8_0_final(uint32_t *A,
STEP8_MAJ_6(d_cw0[6], t, u, &A[16], &A[24], A, &A[8]);
STEP8_MAJ_7(d_cw0[7], u, r, &A[8], &A[16], &A[24], A);
}
static __constant__ uint32_t d_cw1[8][8];
static const uint32_t h_cw1[8][8] = {
static __constant__ uint32_t d_cw1[8][8] = {
//static const uint32_t h_cw1[8][8] = {
0xC34C07F3, 0xC914143C, 0x599CBC12, 0xBCCBE543, 0x385EF3B7, 0x14F54C9A, 0x0AD7C068, 0xB64A21F7,
0xDEC2AF10, 0xC6E9C121, 0x56B8A4F2, 0x1158D107, 0xEB0BA88F, 0x050FAABA, 0xC293264D, 0x548D46D2,
0xACE5E8E0, 0x53D421F7, 0xF470D279, 0xDC974E0C, 0xD6CF55FF, 0xFD1C4F7E, 0x36EC36EC, 0x3E261E5A,
@ -1078,10 +1081,9 @@ static const uint32_t h_cw1[8][8] = {
0xF4702B5C, 0xC293FC63, 0xDA6CB2AD, 0x45601FCC, 0xA439E1A6, 0x4E0C0D02, 0xED3621F7, 0xAB73BE3D,
0x0E74D4A4, 0xF754CF95, 0xD84136EC, 0x3124AB73, 0x39D03B42, 0x0E74BCCB, 0x0F2DBD84, 0x41C35C80
};
__device__ __forceinline__ void Round8_1_final(uint32_t *A,
int r, int s, int t, int u) {
__device__ __forceinline__ void Round8_1_final(uint32_t *A, int r, int s, int t, int u)
{
STEP8_IF_8(d_cw1[0], r, s, A, &A[8], &A[16], &A[24]);
STEP8_IF_9(d_cw1[1], s, t, &A[24], A, &A[8], &A[16]);
STEP8_IF_10(d_cw1[2], t, u, &A[16], &A[24], A, &A[8]);
@ -1091,8 +1093,9 @@ __device__ __forceinline__ void Round8_1_final(uint32_t *A,
STEP8_MAJ_14(d_cw1[6], t, u, &A[16], &A[24], A, &A[8]);
STEP8_MAJ_15(d_cw1[7], u, r, &A[8], &A[16], &A[24], A);
}
static __constant__ uint32_t d_cw2[8][8];
static const uint32_t h_cw2[8][8] = {
static __constant__ uint32_t d_cw2[8][8] = {
//static const uint32_t h_cw2[8][8] = {
0xA4135BED, 0xE10E1EF2, 0x6C4F93B1, 0x6E2191DF, 0xE2E01D20, 0xD1952E6B, 0x6A7D9583, 0x131DECE3,
0x369CC964, 0xFB73048D, 0x9E9D6163, 0x280CD7F4, 0xD9C6263A, 0x1062EF9E, 0x2AC7D539, 0xAD2D52D3,
0x0A03F5FD, 0x197CE684, 0xAA72558E, 0xDE5321AD, 0xF0870F79, 0x607A9F86, 0xAFE85018, 0x2AC7D539,
@ -1102,10 +1105,9 @@ static const uint32_t h_cw2[8][8] = {
0xFC5C03A4, 0x48D0B730, 0x2AC7D539, 0xD70B28F5, 0x53BCAC44, 0x3FB6C04A, 0x14EFEB11, 0xDB982468,
0x9A1065F0, 0xB0D14F2F, 0x8D5272AE, 0xC4D73B29, 0x91DF6E21, 0x949A6B66, 0x303DCFC3, 0x5932A6CE
};
__device__ __forceinline__ void Round8_2_final(uint32_t *A,
int r, int s, int t, int u) {
__device__ __forceinline__ void Round8_2_final(uint32_t *A, int r, int s, int t, int u)
{
STEP8_IF_16(d_cw2[0], r, s, A, &A[8], &A[16], &A[24]);
STEP8_IF_17(d_cw2[1], s, t, &A[24], A, &A[8], &A[16]);
STEP8_IF_18(d_cw2[2], t, u, &A[16], &A[24], A, &A[8]);
@ -1115,8 +1117,9 @@ __device__ __forceinline__ void Round8_2_final(uint32_t *A,
STEP8_MAJ_22(d_cw2[6], t, u, &A[16], &A[24], A, &A[8]);
STEP8_MAJ_23(d_cw2[7], u, r, &A[8], &A[16], &A[24], A);
}
static __constant__ uint32_t d_cw3[8][8];
static const uint32_t h_cw3[8][8] = {
static __constant__ uint32_t d_cw3[8][8] = {
//static const uint32_t h_cw3[8][8] = {
0x1234EDCC, 0xF5140AEC, 0xCDF1320F, 0x3DE4C21C, 0x48D0B730, 0x1234EDCC, 0x131DECE3, 0x52D3AD2D,
0xE684197C, 0x6D3892C8, 0x72AE8D52, 0x6FF3900D, 0x73978C69, 0xEB1114EF, 0x15D8EA28, 0x71C58E3B,
0x90F66F0A, 0x15D8EA28, 0x9BE2641E, 0x65F09A10, 0xEA2815D8, 0xBD8F4271, 0x3A40C5C0, 0xD9C6263A,
@ -1126,10 +1129,9 @@ static const uint32_t h_cw3[8][8] = {
0x975568AB, 0x6994966C, 0xF1700E90, 0xD3672C99, 0xCC1F33E1, 0xFC5C03A4, 0x452CBAD4, 0x4E46B1BA,
0xF1700E90, 0xB2A34D5D, 0xD0AC2F54, 0x5760A8A0, 0x8C697397, 0x624C9DB4, 0xE85617AA, 0x95836A7D
};
__device__ __forceinline__ void Round8_3_final(uint32_t *A,
int r, int s, int t, int u) {
__device__ __forceinline__ void Round8_3_final(uint32_t *A, int r, int s, int t, int u)
{
STEP8_IF_24(d_cw3[0], r, s, A, &A[8], &A[16], &A[24]);
STEP8_IF_25(d_cw3[1], s, t, &A[24], A, &A[8], &A[16]);
STEP8_IF_26(d_cw3[2], t, u, &A[16], &A[24], A, &A[8]);

View File

@ -0,0 +1,579 @@
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 210
#endif
#if __CUDA_ARCH__ < 300
#define T32(x) (x)
#ifndef DEVICE_DIRECT_CONSTANTS /* already made in SM 3+ implementation */
__constant__ uint32_t c_IV_512[32];
const uint32_t h_IV_512[32] = {
0x0ba16b95, 0x72f999ad, 0x9fecc2ae, 0xba3264fc, 0x5e894929, 0x8e9f30e5, 0x2f1daa37, 0xf0f2c558,
0xac506643, 0xa90635a5, 0xe25b878b, 0xaab7878f, 0x88817f7a, 0x0a02892b, 0x559a7550, 0x598f657e,
0x7eef60a1, 0x6b70e3e8, 0x9c1714d1, 0xb958e2a8, 0xab02675e, 0xed1c014f, 0xcd8d65bb, 0xfdb7a257,
0x09254899, 0xd699c7bc, 0x9019b6dc, 0x2b9022e4, 0x8fa14956, 0x21bf9bd3, 0xb94d0943, 0x6ffddc22
};
__constant__ int c_FFT128_8_16_Twiddle[128];
static const int h_FFT128_8_16_Twiddle[128] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 60, 2, 120, 4, -17, 8, -34, 16, -68, 32, 121, 64, -15, 128, -30,
1, 46, 60, -67, 2, 92, 120, 123, 4, -73, -17, -11, 8, 111, -34, -22,
1, -67, 120, -73, 8, -22, -68, -70, 64, 81, -30, -46, -2,-123, 17,-111,
1,-118, 46, -31, 60, 116, -67, -61, 2, 21, 92, -62, 120, -25, 123,-122,
1, 116, 92,-122, -17, 84, -22, 18, 32, 114, 117, -49, -30, 118, 67, 62,
1, -31, -67, 21, 120, -122, -73, -50, 8, 9, -22, -89, -68, 52, -70, 114,
1, -61, 123, -50, -34, 18, -70, -99, 128, -98, 67, 25, 17, -9, 35, -79
};
__constant__ int c_FFT256_2_128_Twiddle[128];
static const int h_FFT256_2_128_Twiddle[128] = {
1, 41,-118, 45, 46, 87, -31, 14,
60,-110, 116,-127, -67, 80, -61, 69,
2, 82, 21, 90, 92, -83, -62, 28,
120, 37, -25, 3, 123, -97,-122,-119,
4, -93, 42, -77, -73, 91,-124, 56,
-17, 74, -50, 6, -11, 63, 13, 19,
8, 71, 84, 103, 111, -75, 9, 112,
-34,-109,-100, 12, -22, 126, 26, 38,
16,-115, -89, -51, -35, 107, 18, -33,
-68, 39, 57, 24, -44, -5, 52, 76,
32, 27, 79,-102, -70, -43, 36, -66,
121, 78, 114, 48, -88, -10, 104,-105,
64, 54, -99, 53, 117, -86, 72, 125,
-15,-101, -29, 96, 81, -20, -49, 47,
128, 108, 59, 106, -23, 85,-113, -7,
-30, 55, -58, -65, -95, -40, -98, 94
};
#endif
__constant__ int c_FFT[256] =
//const int h_FFT[256] =
{
// this is the FFT result in revbin permuted order
4, -4, 32, -32, -60, 60, 60, -60, 101, -101, 58, -58, 112, -112, -11, 11, -92, 92,
-119, 119, 42, -42, -82, 82, 32, -32, 32, -32, 121, -121, 17, -17, -47, 47, 63,
-63, 107, -107, -76, 76, -119, 119, -83, 83, 126, -126, 94, -94, -23, 23, -76,
76, -47, 47, 92, -92, -117, 117, 73, -73, -53, 53, 88, -88, -80, 80, -47, 47,
5, -5, 67, -67, 34, -34, 4, -4, 87, -87, -28, 28, -70, 70, -110, 110, -18, 18, 93,
-93, 51, -51, 36, -36, 118, -118, -106, 106, 45, -45, -108, 108, -44, 44, 117,
-117, -121, 121, -37, 37, 65, -65, 37, -37, 40, -40, -42, 42, 91, -91, -128, 128,
-21, 21, 94, -94, -98, 98, -47, 47, 28, -28, 115, -115, 16, -16, -20, 20, 122,
-122, 115, -115, 46, -46, 84, -84, -127, 127, 57, -57, 127, -127, -80, 80, 24,
-24, 15, -15, 29, -29, -78, 78, -126, 126, 16, -16, 52, -52, 55, -55, 110, -110,
-51, 51, -120, 120, -124, 124, -24, 24, -76, 76, 26, -26, -21, 21, -64, 64, -99,
99, 85, -85, -15, 15, -120, 120, -116, 116, 85, -85, 12, -12, -24, 24, 4, -4,
79, -79, 76, -76, 23, -23, 4, -4, -108, 108, -20, 20, 73, -73, -42, 42, -7, 7,
-29, 29, -123, 123, 49, -49, -96, 96, -68, 68, -112, 112, 116, -116, -24, 24, 93,
-93, -125, 125, -86, 86, 117, -117, -91, 91, 42, -42, 87, -87, -117, 117, 102, -102
};
__constant__ int c_P8[32][8] = {
//static const int h_P8[32][8] = {
{ 2, 66, 34, 98, 18, 82, 50, 114 },
{ 6, 70, 38, 102, 22, 86, 54, 118 },
{ 0, 64, 32, 96, 16, 80, 48, 112 },
{ 4, 68, 36, 100, 20, 84, 52, 116 },
{ 14, 78, 46, 110, 30, 94, 62, 126 },
{ 10, 74, 42, 106, 26, 90, 58, 122 },
{ 12, 76, 44, 108, 28, 92, 60, 124 },
{ 8, 72, 40, 104, 24, 88, 56, 120 },
{ 15, 79, 47, 111, 31, 95, 63, 127 },
{ 13, 77, 45, 109, 29, 93, 61, 125 },
{ 3, 67, 35, 99, 19, 83, 51, 115 },
{ 1, 65, 33, 97, 17, 81, 49, 113 },
{ 9, 73, 41, 105, 25, 89, 57, 121 },
{ 11, 75, 43, 107, 27, 91, 59, 123 },
{ 5, 69, 37, 101, 21, 85, 53, 117 },
{ 7, 71, 39, 103, 23, 87, 55, 119 },
{ 8, 72, 40, 104, 24, 88, 56, 120 },
{ 4, 68, 36, 100, 20, 84, 52, 116 },
{ 14, 78, 46, 110, 30, 94, 62, 126 },
{ 2, 66, 34, 98, 18, 82, 50, 114 },
{ 6, 70, 38, 102, 22, 86, 54, 118 },
{ 10, 74, 42, 106, 26, 90, 58, 122 },
{ 0, 64, 32, 96, 16, 80, 48, 112 },
{ 12, 76, 44, 108, 28, 92, 60, 124 },
{ 134, 198, 166, 230, 150, 214, 182, 246 },
{ 128, 192, 160, 224, 144, 208, 176, 240 },
{ 136, 200, 168, 232, 152, 216, 184, 248 },
{ 142, 206, 174, 238, 158, 222, 190, 254 },
{ 140, 204, 172, 236, 156, 220, 188, 252 },
{ 138, 202, 170, 234, 154, 218, 186, 250 },
{ 130, 194, 162, 226, 146, 210, 178, 242 },
{ 132, 196, 164, 228, 148, 212, 180, 244 },
};
__constant__ int c_Q8[32][8] = {
//static const int h_Q8[32][8] = {
{ 130, 194, 162, 226, 146, 210, 178, 242 },
{ 134, 198, 166, 230, 150, 214, 182, 246 },
{ 128, 192, 160, 224, 144, 208, 176, 240 },
{ 132, 196, 164, 228, 148, 212, 180, 244 },
{ 142, 206, 174, 238, 158, 222, 190, 254 },
{ 138, 202, 170, 234, 154, 218, 186, 250 },
{ 140, 204, 172, 236, 156, 220, 188, 252 },
{ 136, 200, 168, 232, 152, 216, 184, 248 },
{ 143, 207, 175, 239, 159, 223, 191, 255 },
{ 141, 205, 173, 237, 157, 221, 189, 253 },
{ 131, 195, 163, 227, 147, 211, 179, 243 },
{ 129, 193, 161, 225, 145, 209, 177, 241 },
{ 137, 201, 169, 233, 153, 217, 185, 249 },
{ 139, 203, 171, 235, 155, 219, 187, 251 },
{ 133, 197, 165, 229, 149, 213, 181, 245 },
{ 135, 199, 167, 231, 151, 215, 183, 247 },
{ 9, 73, 41, 105, 25, 89, 57, 121 },
{ 5, 69, 37, 101, 21, 85, 53, 117 },
{ 15, 79, 47, 111, 31, 95, 63, 127 },
{ 3, 67, 35, 99, 19, 83, 51, 115 },
{ 7, 71, 39, 103, 23, 87, 55, 119 },
{ 11, 75, 43, 107, 27, 91, 59, 123 },
{ 1, 65, 33, 97, 17, 81, 49, 113 },
{ 13, 77, 45, 109, 29, 93, 61, 125 },
{ 135, 199, 167, 231, 151, 215, 183, 247 },
{ 129, 193, 161, 225, 145, 209, 177, 241 },
{ 137, 201, 169, 233, 153, 217, 185, 249 },
{ 143, 207, 175, 239, 159, 223, 191, 255 },
{ 141, 205, 173, 237, 157, 221, 189, 253 },
{ 139, 203, 171, 235, 155, 219, 187, 251 },
{ 131, 195, 163, 227, 147, 211, 179, 243 },
{ 133, 197, 165, 229, 149, 213, 181, 245 },
};
#define p8_xor(x) ( ((x)%7) == 0 ? 1 : \
((x)%7) == 1 ? 6 : \
((x)%7) == 2 ? 2 : \
((x)%7) == 3 ? 3 : \
((x)%7) == 4 ? 5 : \
((x)%7) == 5 ? 7 : 4 )
/************* the round function ****************/
#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define MAJ(x, y, z) (((z) & (y)) | (((z) | (y)) & (x)))
__device__ __forceinline__
void STEP8_IF(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
{
uint32_t R[8];
#pragma unroll 8
for(int j=0; j<8; j++) {
R[j] = ROTL32(A[j], r);
}
#pragma unroll 8
for(int j=0; j<8; j++) {
D[j] = D[j] + w[j] + IF(A[j], B[j], C[j]);
D[j] = T32(ROTL32(T32(D[j]), s) + R[j^p8_xor(i)]);
A[j] = R[j];
}
}
__device__ __forceinline__
void STEP8_MAJ(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
{
uint32_t R[8];
#pragma unroll 8
for(int j=0; j<8; j++) {
R[j] = ROTL32(A[j], r);
}
#pragma unroll 8
for(int j=0; j<8; j++) {
D[j] = D[j] + w[j] + MAJ(A[j], B[j], C[j]);
D[j] = T32(ROTL32(T32(D[j]), s) + R[j^p8_xor(i)]);
A[j] = R[j];
}
}
__device__ __forceinline__
void Round8(uint32_t A[32], const int y[256], int i, int r, int s, int t, int u)
{
uint32_t w[8][8];
int code = i<2? 185: 233;
int a, b;
/*
* The FFT output y is in revbin permuted order,
* but this is included in the tables P and Q
*/
#pragma unroll 8
for(a=0; a<8; a++) {
#pragma unroll 8
for(b=0; b<8; b++) {
w[a][b] = __byte_perm( (y[c_P8[8*i+a][b]] * code), (y[c_Q8[8*i+a][b]] * code), 0x5410);
}
}
STEP8_IF(w[0], 8*i+0, r, s, A, &A[8], &A[16], &A[24]);
STEP8_IF(w[1], 8*i+1, s, t, &A[24], A, &A[8], &A[16]);
STEP8_IF(w[2], 8*i+2, t, u, &A[16], &A[24], A, &A[8]);
STEP8_IF(w[3], 8*i+3, u, r, &A[8], &A[16], &A[24], A);
STEP8_MAJ(w[4], 8*i+4, r, s, A, &A[8], &A[16], &A[24]);
STEP8_MAJ(w[5], 8*i+5, s, t, &A[24], A, &A[8], &A[16]);
STEP8_MAJ(w[6], 8*i+6, t, u, &A[16], &A[24], A, &A[8]);
STEP8_MAJ(w[7], 8*i+7, u, r, &A[8], &A[16], &A[24], A);
}
/********************* Message expansion ************************/
/*
* Reduce modulo 257; result is in [-127; 383]
* REDUCE(x) := (x&255) - (x>>8)
*/
#define REDUCE(x) (((x)&255) - ((x)>>8))
/*
* Reduce from [-127; 383] to [-128; 128]
* EXTRA_REDUCE_S(x) := x<=128 ? x : x-257
*/
#define EXTRA_REDUCE_S(x) \
((x)<=128 ? (x) : (x)-257)
/*
* Reduce modulo 257; result is in [-128; 128]
*/
#define REDUCE_FULL_S(x) \
EXTRA_REDUCE_S(REDUCE(x))
__device__ __forceinline__
void FFT_8(int *y, int stripe)
{
/*
* FFT_8 using w=4 as 8th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.
* Output data is in revbin_permuted order.
*/
#define X(i) y[stripe*i]
#define DO_REDUCE(i) \
X(i) = REDUCE(X(i))
#define DO_REDUCE_FULL_S(i) do { \
X(i) = REDUCE(X(i)); \
X(i) = EXTRA_REDUCE_S(X(i)); \
} while(0)
#define BUTTERFLY(i,j,n) do { \
int u= X(i); \
int v= X(j); \
X(i) = u+v; \
X(j) = (u-v) << (2*n); \
} while(0)
BUTTERFLY(0, 4, 0);
BUTTERFLY(1, 5, 1);
BUTTERFLY(2, 6, 2);
BUTTERFLY(3, 7, 3);
DO_REDUCE(6);
DO_REDUCE(7);
BUTTERFLY(0, 2, 0);
BUTTERFLY(4, 6, 0);
BUTTERFLY(1, 3, 2);
BUTTERFLY(5, 7, 2);
DO_REDUCE(7);
BUTTERFLY(0, 1, 0);
BUTTERFLY(2, 3, 0);
BUTTERFLY(4, 5, 0);
BUTTERFLY(6, 7, 0);
DO_REDUCE_FULL_S(0);
DO_REDUCE_FULL_S(1);
DO_REDUCE_FULL_S(2);
DO_REDUCE_FULL_S(3);
DO_REDUCE_FULL_S(4);
DO_REDUCE_FULL_S(5);
DO_REDUCE_FULL_S(6);
DO_REDUCE_FULL_S(7);
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
}
__device__ __forceinline__
void FFT_16(int *y, int stripe)
{
/*
* FFT_16 using w=2 as 16th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.
* Output data is in revbin_permuted order.
*/
#define X(i) y[stripe*i]
#define DO_REDUCE(i) \
X(i) = REDUCE(X(i))
#define DO_REDUCE_FULL_S(i) \
do { \
X(i) = REDUCE(X(i)); \
X(i) = EXTRA_REDUCE_S(X(i)); \
} while(0)
#define BUTTERFLY(i,j,n) \
do { \
int u= X(i); \
int v= X(j); \
X(i) = u+v; \
X(j) = (u-v) << n; \
} while(0)
BUTTERFLY(0, 8, 0);
BUTTERFLY(1, 9, 1);
BUTTERFLY(2, 10, 2);
BUTTERFLY(3, 11, 3);
BUTTERFLY(4, 12, 4);
BUTTERFLY(5, 13, 5);
BUTTERFLY(6, 14, 6);
BUTTERFLY(7, 15, 7);
DO_REDUCE(11);
DO_REDUCE(12);
DO_REDUCE(13);
DO_REDUCE(14);
DO_REDUCE(15);
BUTTERFLY( 0, 4, 0);
BUTTERFLY( 1, 5, 2);
BUTTERFLY( 2, 6, 4);
BUTTERFLY( 3, 7, 6);
BUTTERFLY( 8, 12, 0);
BUTTERFLY( 9, 13, 2);
BUTTERFLY(10, 14, 4);
BUTTERFLY(11, 15, 6);
DO_REDUCE(5);
DO_REDUCE(7);
DO_REDUCE(13);
DO_REDUCE(15);
BUTTERFLY( 0, 2, 0);
BUTTERFLY( 1, 3, 4);
BUTTERFLY( 4, 6, 0);
BUTTERFLY( 5, 7, 4);
BUTTERFLY( 8, 10, 0);
BUTTERFLY(12, 14, 0);
BUTTERFLY( 9, 11, 4);
BUTTERFLY(13, 15, 4);
BUTTERFLY( 0, 1, 0);
BUTTERFLY( 2, 3, 0);
BUTTERFLY( 4, 5, 0);
BUTTERFLY( 6, 7, 0);
BUTTERFLY( 8, 9, 0);
BUTTERFLY(10, 11, 0);
BUTTERFLY(12, 13, 0);
BUTTERFLY(14, 15, 0);
DO_REDUCE_FULL_S( 0);
DO_REDUCE_FULL_S( 1);
DO_REDUCE_FULL_S( 2);
DO_REDUCE_FULL_S( 3);
DO_REDUCE_FULL_S( 4);
DO_REDUCE_FULL_S( 5);
DO_REDUCE_FULL_S( 6);
DO_REDUCE_FULL_S( 7);
DO_REDUCE_FULL_S( 8);
DO_REDUCE_FULL_S( 9);
DO_REDUCE_FULL_S(10);
DO_REDUCE_FULL_S(11);
DO_REDUCE_FULL_S(12);
DO_REDUCE_FULL_S(13);
DO_REDUCE_FULL_S(14);
DO_REDUCE_FULL_S(15);
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
}
__device__ __forceinline__
void FFT_128_full(int *y)
{
#pragma unroll 16
for (int i=0; i<16; i++) {
FFT_8(y+i,16);
}
#pragma unroll 128
for (int i=0; i<128; i++)
/*if (i & 7)*/ y[i] = REDUCE(y[i]*c_FFT128_8_16_Twiddle[i]);
#pragma unroll 8
for (int i=0; i<8; i++) {
FFT_16(y+16*i,1);
}
}
__device__ __forceinline__
void FFT_256_halfzero(int y[256])
{
/*
* FFT_256 using w=41 as 256th root of unity.
* Decimation in frequency (DIF) NTT.
* Output data is in revbin_permuted order.
* In place.
*/
const int tmp = y[127];
#pragma unroll 127
for (int i=0; i<127; i++)
y[128+i] = REDUCE(y[i] * c_FFT256_2_128_Twiddle[i]);
/* handle X^255 with an additionnal butterfly */
y[127] = REDUCE(tmp + 1);
y[255] = REDUCE((tmp - 1) * c_FFT256_2_128_Twiddle[127]);
FFT_128_full(y);
FFT_128_full(y+128);
}
__device__ __forceinline__
void SIMD_Compress(uint32_t A[32], const int *expanded, const uint32_t *M)
{
uint32_t IV[4][8];
/* Save the chaining value for the feed-forward */
#pragma unroll 8
for(int i=0; i<8; i++) {
IV[0][i] = A[i];
IV[1][i] = (&A[8])[i];
IV[2][i] = (&A[16])[i];
IV[3][i] = (&A[24])[i];
}
/* XOR the message to the chaining value */
/* we can XOR word-by-word */
#pragma unroll 8
for(int i=0; i<8; i++) {
A[i] ^= M[i];
(&A[8])[i] ^= M[8+i];
}
/* Run the feistel ladders with the expanded message */
Round8(A, expanded, 0, 3, 23, 17, 27);
Round8(A, expanded, 1, 28, 19, 22, 7);
Round8(A, expanded, 2, 29, 9, 15, 5);
Round8(A, expanded, 3, 4, 13, 10, 25);
STEP8_IF(IV[0], 32, 4, 13, A, &A[8], &A[16], &A[24]);
STEP8_IF(IV[1], 33, 13, 10, &A[24], A, &A[8], &A[16]);
STEP8_IF(IV[2], 34, 10, 25, &A[16], &A[24], A, &A[8]);
STEP8_IF(IV[3], 35, 25, 4, &A[8], &A[16], &A[24], A);
}
/***************************************************/
__device__ __forceinline__
void SIMDHash(const uint32_t *data, uint32_t *hashval)
{
uint32_t A[32];
uint32_t buffer[16];
#pragma unroll 32
for (int i=0; i < 32; i++) A[i] = c_IV_512[i];
#pragma unroll 16
for (int i=0; i < 16; i++) buffer[i] = data[i];
/* Message Expansion using Number Theoretical Transform similar to FFT */
int expanded[256];
{
#pragma unroll 16
for(int i=0; i<64; i+=4) {
expanded[i+0] = __byte_perm(buffer[i/4],0,0x4440);
expanded[i+1] = __byte_perm(buffer[i/4],0,0x4441);
expanded[i+2] = __byte_perm(buffer[i/4],0,0x4442);
expanded[i+3] = __byte_perm(buffer[i/4],0,0x4443);
}
#pragma unroll 16
for(int i=64; i<128; i+=4) {
expanded[i+0] = 0;
expanded[i+1] = 0;
expanded[i+2] = 0;
expanded[i+3] = 0;
}
FFT_256_halfzero(expanded);
}
/* Compression Function */
SIMD_Compress(A, expanded, buffer);
/* Padding Round with known input (hence the FFT can be precomputed) */
buffer[0] = 512;
#pragma unroll 15
for (int i=1; i < 16; i++) buffer[i] = 0;
SIMD_Compress(A, c_FFT, buffer);
#pragma unroll 16
for (int i=0; i < 16; i++)
hashval[i] = A[i];
}
/***************************************************/
__global__
void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
const int hashPosition = nounce - startNounce;
uint32_t *Hash = (uint32_t*) &g_hash[8 * hashPosition];
SIMDHash(Hash, Hash);
}
}
#else
__global__ void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) {}
#endif /* __CUDA_ARCH__ */
__host__
static void x11_simd512_cpu_init_sm2(int thr_id)
{
#ifndef DEVICE_DIRECT_CONSTANTS
cudaMemcpyToSymbol( c_IV_512, h_IV_512, sizeof(h_IV_512), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT128_8_16_Twiddle, h_FFT128_8_16_Twiddle, sizeof(h_FFT128_8_16_Twiddle), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT256_2_128_Twiddle, h_FFT256_2_128_Twiddle, sizeof(h_FFT256_2_128_Twiddle), 0, cudaMemcpyHostToDevice);
#endif
// cudaMemcpyToSymbol( c_FFT, h_FFT, sizeof(h_FFT), 0, cudaMemcpyHostToDevice);
// cudaMemcpyToSymbol( c_P8, h_P8, sizeof(h_P8), 0, cudaMemcpyHostToDevice);
// cudaMemcpyToSymbol( c_Q8, h_Q8, sizeof(h_Q8), 0, cudaMemcpyHostToDevice);
}
__host__
static void x11_simd512_cpu_hash_64_sm2(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
x11_simd512_gpu_hash_64_sm2<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}

View File

@ -43,6 +43,21 @@ extern "C" void s3hash(void *output, const void *input)
memcpy(output, hash, 32);
}
#ifdef _DEBUG
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 32); \
cudaMemcpy(debugbuf, d_hash[thr_id], 32, cudaMemcpyDeviceToHost); \
printf("S3 %s %08x %08x %08x %08x...%08x\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3]), swab32(debugbuf[7])); \
cudaFreeHost(debugbuf); \
} \
}
#else
#define TRACE(algo) {}
#endif
static bool init[MAX_GPUS] = { 0 };
/* Main S3 entry point */
@ -60,18 +75,24 @@ extern "C" int scanhash_s3(int thr_id, struct work* work, uint32_t max_nonce, un
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0xF;
ptarget[7] = 0xF;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
x11_shavite512_cpu_init(thr_id, throughput);
x11_simd512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput), 0);
cuda_check_cpu_init(thr_id, throughput);
init[thr_id] = true;
@ -90,8 +111,11 @@ extern "C" int scanhash_s3(int thr_id, struct work* work, uint32_t max_nonce, un
int order = 0;
x11_shavite512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("shavite:");
x11_simd512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("simd :");
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("skein :");
*hashes_done = pdata[19] - first_nonce + throughput;

View File

@ -114,11 +114,17 @@ extern "C" int scanhash_x11(int thr_id, struct work* work, uint32_t max_nonce, u
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x5;
ptarget[7] = 0x5;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
quark_blake512_cpu_init(thr_id, throughput);
quark_bmw512_cpu_init(thr_id, throughput);