mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-22 04:24:29 +00:00
myr-gr: handle a second nonce & more cleanup
This commit is contained in:
parent
374174c7c8
commit
06e2485128
@ -8,6 +8,7 @@
|
|||||||
#ifdef __INTELLISENSE__
|
#ifdef __INTELLISENSE__
|
||||||
#define __CUDA_ARCH__ 500
|
#define __CUDA_ARCH__ 500
|
||||||
#define __funnelshift_r(x,y,n) (x >> n)
|
#define __funnelshift_r(x,y,n) (x >> n)
|
||||||
|
#define atomicExch(p,x) x
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if __CUDA_ARCH__ >= 300
|
#if __CUDA_ARCH__ >= 300
|
||||||
@ -17,10 +18,10 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
// globaler Speicher für alle HeftyHashes aller Threads
|
// globaler Speicher für alle HeftyHashes aller Threads
|
||||||
__constant__ uint32_t pTarget[8]; // Single GPU
|
|
||||||
static uint32_t *d_outputHashes[MAX_GPUS];
|
static uint32_t *d_outputHashes[MAX_GPUS];
|
||||||
static uint32_t *d_resultNonce[MAX_GPUS];
|
static uint32_t *d_resultNonces[MAX_GPUS];
|
||||||
|
|
||||||
|
__constant__ uint32_t pTarget[2]; // Same for all GPU
|
||||||
__constant__ uint32_t myriadgroestl_gpu_msg[32];
|
__constant__ uint32_t myriadgroestl_gpu_msg[32];
|
||||||
|
|
||||||
// muss expandiert werden
|
// muss expandiert werden
|
||||||
@ -67,33 +68,25 @@ const uint32_t myr_sha256_cpu_w2Table[] = {
|
|||||||
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
|
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
|
||||||
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
|
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
|
||||||
|
|
||||||
__device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
__device__ __forceinline__
|
||||||
|
void myriadgroestl_gpu_sha256(uint32_t *message)
|
||||||
{
|
{
|
||||||
uint32_t regs[8], hash[8];
|
|
||||||
const uint32_t myr_sha256_gpu_hashTable[8] = {
|
|
||||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
|
||||||
};
|
|
||||||
|
|
||||||
// pre
|
|
||||||
#pragma unroll 8
|
|
||||||
for (int k=0; k < 8; k++)
|
|
||||||
{
|
|
||||||
regs[k] = myr_sha256_gpu_hashTable[k];
|
|
||||||
hash[k] = regs[k];
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t W1[16];
|
uint32_t W1[16];
|
||||||
#pragma unroll 16
|
#pragma unroll
|
||||||
for(int k=0; k<16; k++)
|
for(int k=0; k<16; k++)
|
||||||
W1[k] = SWAB32(message[k]);
|
W1[k] = SWAB32(message[k]);
|
||||||
|
|
||||||
|
uint32_t regs[8] = {
|
||||||
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
||||||
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||||
|
};
|
||||||
|
|
||||||
// Progress W1
|
// Progress W1
|
||||||
#pragma unroll 16
|
#pragma unroll
|
||||||
for(int j=0; j<16; j++)
|
for(int j=0; j<16; j++)
|
||||||
{
|
{
|
||||||
uint32_t T1, T2;
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
|
||||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
|
||||||
|
|
||||||
#pragma unroll 7
|
#pragma unroll 7
|
||||||
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
||||||
@ -105,27 +98,26 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
|||||||
uint32_t W2[16];
|
uint32_t W2[16];
|
||||||
|
|
||||||
////// PART 1
|
////// PART 1
|
||||||
#pragma unroll 2
|
#pragma unroll
|
||||||
for(int j=0; j<2; j++)
|
for(int j=0; j<2; j++)
|
||||||
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||||
|
|
||||||
#pragma unroll 5
|
#pragma unroll 5
|
||||||
for(int j=2;j<7;j++)
|
for(int j=2; j<7;j++)
|
||||||
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||||
|
|
||||||
#pragma unroll 8
|
#pragma unroll
|
||||||
for(int j=7; j<15; j++)
|
for(int j=7; j<15; j++)
|
||||||
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
||||||
|
|
||||||
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
||||||
|
|
||||||
// Round function
|
// Round function
|
||||||
#pragma unroll 16
|
#pragma unroll
|
||||||
for(int j=0; j<16; j++)
|
for(int j=0; j<16; j++)
|
||||||
{
|
{
|
||||||
uint32_t T1, T2;
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
|
||||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
|
||||||
|
|
||||||
#pragma unroll 7
|
#pragma unroll 7
|
||||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||||
@ -134,26 +126,25 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
|||||||
}
|
}
|
||||||
|
|
||||||
////// PART 2
|
////// PART 2
|
||||||
#pragma unroll 2
|
#pragma unroll
|
||||||
for(int j=0; j<2; j++)
|
for(int j=0; j<2; j++)
|
||||||
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
||||||
#pragma unroll 5
|
#pragma unroll 5
|
||||||
for(int j=2; j<7; j++)
|
for(int j=2; j<7; j++)
|
||||||
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
||||||
|
|
||||||
#pragma unroll 8
|
#pragma unroll
|
||||||
for(int j=7; j<15; j++)
|
for(int j=7; j<15; j++)
|
||||||
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
|
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
|
||||||
|
|
||||||
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
|
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
|
||||||
|
|
||||||
// Round function
|
// Round function
|
||||||
#pragma unroll 16
|
#pragma unroll
|
||||||
for(int j=0; j<16; j++)
|
for(int j=0; j<16; j++)
|
||||||
{
|
{
|
||||||
uint32_t T1, T2;
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
|
||||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
|
||||||
|
|
||||||
#pragma unroll 7
|
#pragma unroll 7
|
||||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||||
@ -162,26 +153,26 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
|||||||
}
|
}
|
||||||
|
|
||||||
////// PART 3
|
////// PART 3
|
||||||
#pragma unroll 2
|
#pragma unroll
|
||||||
for(int j=0; j<2; j++)
|
for(int j=0; j<2; j++)
|
||||||
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||||
|
|
||||||
#pragma unroll 5
|
#pragma unroll 5
|
||||||
for(int j=2; j<7; j++)
|
for(int j=2; j<7; j++)
|
||||||
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||||
|
|
||||||
#pragma unroll 8
|
#pragma unroll
|
||||||
for(int j=7; j<15; j++)
|
for(int j=7; j<15; j++)
|
||||||
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
||||||
|
|
||||||
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
||||||
|
|
||||||
// Round function
|
// Round function
|
||||||
#pragma unroll 16
|
#pragma unroll
|
||||||
for(int j=0; j<16; j++)
|
for(int j=0; j<16; j++)
|
||||||
{
|
{
|
||||||
uint32_t T1, T2;
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
|
||||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
|
||||||
|
|
||||||
#pragma unroll 7
|
#pragma unroll 7
|
||||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||||
@ -189,6 +180,11 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
|||||||
regs[4] += T1;
|
regs[4] += T1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint32_t hash[8] = {
|
||||||
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
||||||
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||||
|
};
|
||||||
|
|
||||||
#pragma unroll 8
|
#pragma unroll 8
|
||||||
for(int k=0; k<8; k++)
|
for(int k=0; k<8; k++)
|
||||||
hash[k] += regs[k];
|
hash[k] += regs[k];
|
||||||
@ -196,17 +192,16 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
|||||||
/////
|
/////
|
||||||
///// 2nd Round (wegen Msg-Padding)
|
///// 2nd Round (wegen Msg-Padding)
|
||||||
/////
|
/////
|
||||||
#pragma unroll 8
|
#pragma unroll
|
||||||
for(int k=0; k<8; k++)
|
for(int k=0; k<8; k++)
|
||||||
regs[k] = hash[k];
|
regs[k] = hash[k];
|
||||||
|
|
||||||
// Progress W1
|
// Progress W1
|
||||||
#pragma unroll 64
|
#pragma unroll
|
||||||
for(int j=0; j<64; j++)
|
for(int j=0; j<64; j++)
|
||||||
{
|
{
|
||||||
uint32_t T1, T2;
|
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
|
||||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
|
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
|
||||||
|
|
||||||
#pragma unroll 7
|
#pragma unroll 7
|
||||||
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
||||||
@ -214,15 +209,48 @@ __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
|||||||
regs[4] += T1;
|
regs[4] += T1;
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll 8
|
#if 0
|
||||||
|
// Full sha hash
|
||||||
|
#pragma unroll
|
||||||
for(int k=0; k<8; k++)
|
for(int k=0; k<8; k++)
|
||||||
hash[k] += regs[k];
|
hash[k] += regs[k];
|
||||||
|
|
||||||
//// Close
|
#pragma unroll
|
||||||
|
|
||||||
#pragma unroll 8
|
|
||||||
for(int k=0; k<8; k++)
|
for(int k=0; k<8; k++)
|
||||||
message[k] = SWAB32(hash[k]);
|
message[k] = SWAB32(hash[k]);
|
||||||
|
#else
|
||||||
|
message[6] = SWAB32(hash[6] + regs[6]);
|
||||||
|
message[7] = SWAB32(hash[7] + regs[7]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__
|
||||||
|
//__launch_bounds__(256, 6) // we want <= 40 regs
|
||||||
|
void myriadgroestl_gpu_hash_sha(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer, uint32_t *resNonces)
|
||||||
|
{
|
||||||
|
#if __CUDA_ARCH__ >= 300
|
||||||
|
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||||
|
if (thread < threads)
|
||||||
|
{
|
||||||
|
const uint32_t nonce = startNounce + thread;
|
||||||
|
|
||||||
|
uint32_t out_state[16];
|
||||||
|
uint32_t *inpHash = &hashBuffer[16 * thread];
|
||||||
|
|
||||||
|
#pragma unroll 16
|
||||||
|
for (int i=0; i < 16; i++)
|
||||||
|
out_state[i] = inpHash[i];
|
||||||
|
|
||||||
|
myriadgroestl_gpu_sha256(out_state);
|
||||||
|
|
||||||
|
if (out_state[7] <= pTarget[1] && out_state[6] <= pTarget[0])
|
||||||
|
{
|
||||||
|
uint32_t tmp = atomicExch(&resNonces[0], nonce);
|
||||||
|
if (tmp != UINT32_MAX)
|
||||||
|
resNonces[1] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
@ -248,7 +276,6 @@ void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_
|
|||||||
to_bitslice_quad(paddedInput, msgBitsliced);
|
to_bitslice_quad(paddedInput, msgBitsliced);
|
||||||
|
|
||||||
uint32_t state[8];
|
uint32_t state[8];
|
||||||
|
|
||||||
groestl512_progressMessage_quad(state, msgBitsliced);
|
groestl512_progressMessage_quad(state, msgBitsliced);
|
||||||
|
|
||||||
uint32_t out_state[16];
|
uint32_t out_state[16];
|
||||||
@ -264,49 +291,6 @@ void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
__global__
|
|
||||||
void myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer)
|
|
||||||
{
|
|
||||||
#if __CUDA_ARCH__ >= 300
|
|
||||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
|
||||||
if (thread < threads)
|
|
||||||
{
|
|
||||||
uint32_t nounce = startNounce + thread;
|
|
||||||
|
|
||||||
uint32_t out_state[16];
|
|
||||||
uint32_t *inpHash = &hashBuffer[16 * thread];
|
|
||||||
|
|
||||||
#pragma unroll 16
|
|
||||||
for (int i=0; i < 16; i++)
|
|
||||||
out_state[i] = inpHash[i];
|
|
||||||
|
|
||||||
myriadgroestl_gpu_sha256(out_state);
|
|
||||||
|
|
||||||
int i, position = -1;
|
|
||||||
bool rc = true;
|
|
||||||
|
|
||||||
#pragma unroll 8
|
|
||||||
for (i = 7; i >= 0; i--) {
|
|
||||||
if (out_state[i] > pTarget[i]) {
|
|
||||||
if(position < i) {
|
|
||||||
position = i;
|
|
||||||
rc = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (out_state[i] < pTarget[i]) {
|
|
||||||
if(position < i) {
|
|
||||||
position = i;
|
|
||||||
rc = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if(rc && resNounce[0] > nounce)
|
|
||||||
resNounce[0] = nounce;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
// Setup Function
|
// Setup Function
|
||||||
__host__
|
__host__
|
||||||
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
|
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
|
||||||
@ -315,9 +299,7 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
|
|||||||
for(int i=0; i<64; i++)
|
for(int i=0; i<64; i++)
|
||||||
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
|
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
|
||||||
|
|
||||||
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2,
|
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, temp, sizeof(uint32_t) * 64 );
|
||||||
temp,
|
|
||||||
sizeof(uint32_t) * 64 );
|
|
||||||
|
|
||||||
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
|
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
|
||||||
myr_sha256_cpu_constantTable,
|
myr_sha256_cpu_constantTable,
|
||||||
@ -327,36 +309,26 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
|
|||||||
cuda_get_arch(thr_id);
|
cuda_get_arch(thr_id);
|
||||||
|
|
||||||
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
|
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
|
||||||
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
cudaMalloc(&d_resultNonces[thr_id], 2 * sizeof(uint32_t));
|
||||||
}
|
}
|
||||||
|
|
||||||
__host__
|
__host__
|
||||||
void myriadgroestl_cpu_free(int thr_id)
|
void myriadgroestl_cpu_free(int thr_id)
|
||||||
{
|
{
|
||||||
cudaFree(d_outputHashes[thr_id]);
|
cudaFree(d_outputHashes[thr_id]);
|
||||||
cudaFree(d_resultNonce[thr_id]);
|
cudaFree(d_resultNonces[thr_id]);
|
||||||
}
|
}
|
||||||
|
|
||||||
__host__
|
__host__
|
||||||
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
|
void myriadgroestl_cpu_setBlock(int thr_id, void *data, uint32_t *pTargetIn)
|
||||||
{
|
{
|
||||||
// Nachricht expandieren und setzen
|
|
||||||
uint32_t msgBlock[32] = { 0 };
|
uint32_t msgBlock[32] = { 0 };
|
||||||
memcpy(&msgBlock[0], data, 80);
|
memcpy(&msgBlock[0], data, 80);
|
||||||
|
|
||||||
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
|
|
||||||
// Unsere Nachricht hat 80 Byte
|
|
||||||
msgBlock[20] = 0x80;
|
msgBlock[20] = 0x80;
|
||||||
msgBlock[31] = 0x01000000;
|
msgBlock[31] = 0x01000000;
|
||||||
|
|
||||||
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
|
|
||||||
// auf der GPU ausgeführt)
|
|
||||||
|
|
||||||
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
|
|
||||||
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
|
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
|
||||||
|
cudaMemcpyToSymbol(pTarget, &pTargetIn[6], 2 * sizeof(uint32_t));
|
||||||
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
|
||||||
cudaMemcpyToSymbol(pTarget, pTargetIn, 32);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
__host__
|
__host__
|
||||||
@ -364,26 +336,25 @@ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce,
|
|||||||
{
|
{
|
||||||
uint32_t threadsperblock = 256;
|
uint32_t threadsperblock = 256;
|
||||||
|
|
||||||
|
cudaMemset(d_resultNonces[thr_id], 0xFF, 2 * sizeof(uint32_t));
|
||||||
|
|
||||||
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
|
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
|
||||||
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
|
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
|
||||||
const int factor = 4;
|
const int factor = 4;
|
||||||
|
|
||||||
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
|
||||||
// berechne wie viele Thread Blocks wir brauchen
|
|
||||||
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
|
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
|
||||||
dim3 block(threadsperblock);
|
dim3 block(threadsperblock);
|
||||||
|
|
||||||
if (device_sm[device_map[thr_id]] < 300) {
|
int dev_id = device_map[thr_id];
|
||||||
|
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
|
||||||
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
|
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
|
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
|
||||||
|
|
||||||
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
|
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
|
||||||
myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
|
myriadgroestl_gpu_hash_sha <<< grid2, block >>> (threads, startNounce, d_outputHashes[thr_id], d_resultNonces[thr_id]);
|
||||||
|
|
||||||
// Strategisches Sleep Kommando zur Senkung der CPU Last
|
cudaMemcpy(resNounce, d_resultNonces[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
||||||
//MyStreamSynchronize(NULL, 0, thr_id);
|
|
||||||
|
|
||||||
cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
||||||
}
|
}
|
||||||
|
@ -9,8 +9,8 @@
|
|||||||
|
|
||||||
void myriadgroestl_cpu_init(int thr_id, uint32_t threads);
|
void myriadgroestl_cpu_init(int thr_id, uint32_t threads);
|
||||||
void myriadgroestl_cpu_free(int thr_id);
|
void myriadgroestl_cpu_free(int thr_id);
|
||||||
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn);
|
void myriadgroestl_cpu_setBlock(int thr_id, void *data, uint32_t *target);
|
||||||
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce);
|
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *resNonces);
|
||||||
|
|
||||||
void myriadhash(void *state, const void *input)
|
void myriadhash(void *state, const void *input)
|
||||||
{
|
{
|
||||||
@ -62,27 +62,37 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
|
|||||||
for (int k=0; k < 20; k++)
|
for (int k=0; k < 20; k++)
|
||||||
be32enc(&endiandata[k], pdata[k]);
|
be32enc(&endiandata[k], pdata[k]);
|
||||||
|
|
||||||
myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget);
|
myriadgroestl_cpu_setBlock(thr_id, endiandata, ptarget);
|
||||||
|
|
||||||
do {
|
do {
|
||||||
// GPU
|
// GPU
|
||||||
uint32_t foundNounce = UINT32_MAX;
|
uint32_t foundNonces[2] = { UINT32_MAX, UINT32_MAX };
|
||||||
|
|
||||||
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], &foundNounce);
|
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], foundNonces);
|
||||||
|
|
||||||
*hashes_done = pdata[19] - start_nonce + throughput;
|
*hashes_done = pdata[19] - start_nonce + throughput;
|
||||||
|
|
||||||
if (foundNounce < UINT32_MAX && bench_algo < 0)
|
if (foundNonces[0] < UINT32_MAX && bench_algo < 0)
|
||||||
{
|
{
|
||||||
uint32_t _ALIGN(64) vhash[8];
|
uint32_t _ALIGN(64) vhash[8];
|
||||||
endiandata[19] = swab32(foundNounce);
|
endiandata[19] = swab32(foundNonces[0]);
|
||||||
myriadhash(vhash, endiandata);
|
myriadhash(vhash, endiandata);
|
||||||
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
|
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
|
||||||
work_set_target_ratio(work, vhash);
|
work_set_target_ratio(work, vhash);
|
||||||
pdata[19] = foundNounce;
|
pdata[19] = foundNonces[0];
|
||||||
|
// search for another nonce
|
||||||
|
if (foundNonces[1] != UINT32_MAX) {
|
||||||
|
endiandata[19] = swab32(foundNonces[1]);
|
||||||
|
myriadhash(vhash, endiandata);
|
||||||
|
pdata[21] = foundNonces[1];
|
||||||
|
if(bn_hash_target_ratio(vhash, ptarget) > work->shareratio) {
|
||||||
|
work_set_target_ratio(work, vhash);
|
||||||
|
}
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
return 1;
|
return 1;
|
||||||
} else if (vhash[7] > ptarget[7]) {
|
} else if (vhash[7] > ptarget[7]) {
|
||||||
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce);
|
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonces[0]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user