1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-18 02:30:08 +00:00
ccminer/quark/cuda_bmw512.cu

320 lines
14 KiB
Plaintext
Raw Permalink Normal View History

#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
// die Message it Padding zur Berechnung auf der GPU
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding)
#define SHL(x, n) ((x) << (n))
#define SHR(x, n) ((x) >> (n))
#define CONST_EXP2 \
q[i+0] + ROTL64(q[i+1], 5) + q[i+2] + ROTL64(q[i+3], 11) + \
q[i+4] + ROTL64(q[i+5], 27) + q[i+6] + SWAPDWORDS(q[i+7]) + \
q[i+8] + ROTL64(q[i+9], 37) + q[i+10] + ROTL64(q[i+11], 43) + \
q[i+12] + ROTL64(q[i+13], 53) + (SHR(q[i+14],1) ^ q[i+14]) + (SHR(q[i+15],2) ^ q[i+15])
__device__
void Compression512(uint64_t *msg, uint64_t *hash)
{
// Compression ref. implementation
uint64_t tmp;
uint64_t q[32];
tmp = (msg[ 5] ^ hash[ 5]) - (msg[ 7] ^ hash[ 7]) + (msg[10] ^ hash[10]) + (msg[13] ^ hash[13]) + (msg[14] ^ hash[14]);
q[0] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[1];
tmp = (msg[ 6] ^ hash[ 6]) - (msg[ 8] ^ hash[ 8]) + (msg[11] ^ hash[11]) + (msg[14] ^ hash[14]) - (msg[15] ^ hash[15]);
q[1] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[2];
tmp = (msg[ 0] ^ hash[ 0]) + (msg[ 7] ^ hash[ 7]) + (msg[ 9] ^ hash[ 9]) - (msg[12] ^ hash[12]) + (msg[15] ^ hash[15]);
q[2] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[3];
tmp = (msg[ 0] ^ hash[ 0]) - (msg[ 1] ^ hash[ 1]) + (msg[ 8] ^ hash[ 8]) - (msg[10] ^ hash[10]) + (msg[13] ^ hash[13]);
q[3] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[4];
tmp = (msg[ 1] ^ hash[ 1]) + (msg[ 2] ^ hash[ 2]) + (msg[ 9] ^ hash[ 9]) - (msg[11] ^ hash[11]) - (msg[14] ^ hash[14]);
q[4] = (SHR(tmp, 1) ^ tmp) + hash[5];
tmp = (msg[ 3] ^ hash[ 3]) - (msg[ 2] ^ hash[ 2]) + (msg[10] ^ hash[10]) - (msg[12] ^ hash[12]) + (msg[15] ^ hash[15]);
q[5] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[6];
tmp = (msg[ 4] ^ hash[ 4]) - (msg[ 0] ^ hash[ 0]) - (msg[ 3] ^ hash[ 3]) - (msg[11] ^ hash[11]) + (msg[13] ^ hash[13]);
q[6] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[7];
tmp = (msg[ 1] ^ hash[ 1]) - (msg[ 4] ^ hash[ 4]) - (msg[ 5] ^ hash[ 5]) - (msg[12] ^ hash[12]) - (msg[14] ^ hash[14]);
q[7] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[8];
tmp = (msg[ 2] ^ hash[ 2]) - (msg[ 5] ^ hash[ 5]) - (msg[ 6] ^ hash[ 6]) + (msg[13] ^ hash[13]) - (msg[15] ^ hash[15]);
q[8] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[9];
tmp = (msg[ 0] ^ hash[ 0]) - (msg[ 3] ^ hash[ 3]) + (msg[ 6] ^ hash[ 6]) - (msg[ 7] ^ hash[ 7]) + (msg[14] ^ hash[14]);
q[9] = (SHR(tmp, 1) ^ tmp) + hash[10];
tmp = (msg[ 8] ^ hash[ 8]) - (msg[ 1] ^ hash[ 1]) - (msg[ 4] ^ hash[ 4]) - (msg[ 7] ^ hash[ 7]) + (msg[15] ^ hash[15]);
q[10] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[11];
tmp = (msg[ 8] ^ hash[ 8]) - (msg[ 0] ^ hash[ 0]) - (msg[ 2] ^ hash[ 2]) - (msg[ 5] ^ hash[ 5]) + (msg[ 9] ^ hash[ 9]);
q[11] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[12];
tmp = (msg[ 1] ^ hash[ 1]) + (msg[ 3] ^ hash[ 3]) - (msg[ 6] ^ hash[ 6]) - (msg[ 9] ^ hash[ 9]) + (msg[10] ^ hash[10]);
q[12] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[13];
tmp = (msg[ 2] ^ hash[ 2]) + (msg[ 4] ^ hash[ 4]) + (msg[ 7] ^ hash[ 7]) + (msg[10] ^ hash[10]) + (msg[11] ^ hash[11]);
q[13] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[14];
tmp = (msg[ 3] ^ hash[ 3]) - (msg[ 5] ^ hash[ 5]) + (msg[ 8] ^ hash[ 8]) - (msg[11] ^ hash[11]) - (msg[12] ^ hash[12]);
q[14] = (SHR(tmp, 1) ^ tmp) + hash[15];
tmp = (msg[12] ^ hash[12]) - (msg[ 4] ^ hash[ 4]) - (msg[ 6] ^ hash[ 6]) - (msg[ 9] ^ hash[ 9]) + (msg[13] ^ hash[13]);
q[15] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[0];
// Expand 1
#pragma unroll 2
for(int i=0;i<2;i++)
{
q[i+16] =
(SHR(q[i], 1) ^ SHL(q[i], 2) ^ ROTL64(q[i], 13) ^ ROTL64(q[i], 43)) +
(SHR(q[i+1], 2) ^ SHL(q[i+1], 1) ^ ROTL64(q[i+1], 19) ^ ROTL64(q[i+1], 53)) +
(SHR(q[i+2], 2) ^ SHL(q[i+2], 2) ^ ROTL64(q[i+2], 28) ^ ROTL64(q[i+2], 59)) +
(SHR(q[i+3], 1) ^ SHL(q[i+3], 3) ^ ROTL64(q[i+3], 4) ^ ROTL64(q[i+3], 37)) +
(SHR(q[i+4], 1) ^ SHL(q[i+4], 2) ^ ROTL64(q[i+4], 13) ^ ROTL64(q[i+4], 43)) +
(SHR(q[i+5], 2) ^ SHL(q[i+5], 1) ^ ROTL64(q[i+5], 19) ^ ROTL64(q[i+5], 53)) +
(SHR(q[i+6], 2) ^ SHL(q[i+6], 2) ^ ROTL64(q[i+6], 28) ^ ROTL64(q[i+6], 59)) +
(SHR(q[i+7], 1) ^ SHL(q[i+7], 3) ^ ROTL64(q[i+7], 4) ^ ROTL64(q[i+7], 37)) +
(SHR(q[i+8], 1) ^ SHL(q[i+8], 2) ^ ROTL64(q[i+8], 13) ^ ROTL64(q[i+8], 43)) +
(SHR(q[i+9], 2) ^ SHL(q[i+9], 1) ^ ROTL64(q[i+9], 19) ^ ROTL64(q[i+9], 53)) +
(SHR(q[i+10], 2) ^ SHL(q[i+10], 2) ^ ROTL64(q[i+10], 28) ^ ROTL64(q[i+10], 59)) +
(SHR(q[i+11], 1) ^ SHL(q[i+11], 3) ^ ROTL64(q[i+11], 4) ^ ROTL64(q[i+11], 37)) +
(SHR(q[i+12], 1) ^ SHL(q[i+12], 2) ^ ROTL64(q[i+12], 13) ^ ROTL64(q[i+12], 43)) +
(SHR(q[i+13], 2) ^ SHL(q[i+13], 1) ^ ROTL64(q[i+13], 19) ^ ROTL64(q[i+13], 53)) +
(SHR(q[i+14], 2) ^ SHL(q[i+14], 2) ^ ROTL64(q[i+14], 28) ^ ROTL64(q[i+14], 59)) +
(SHR(q[i+15], 1) ^ SHL(q[i+15], 3) ^ ROTL64(q[i+15], 4) ^ ROTL64(q[i+15], 37)) +
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) +
ROTL64(msg[i+3], i+4) - ROTL64(msg[i+10], i+11) ) ^ hash[i+7]);
}
#pragma unroll 4
for(int i=2;i<6;i++) {
q[i+16] = CONST_EXP2 +
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) +
ROTL64(msg[i+3], i+4) - ROTL64(msg[i+10], i+11) ) ^ hash[i+7]);
}
#pragma unroll 3
for(int i=6;i<9;i++) {
q[i+16] = CONST_EXP2 +
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) +
ROTL64(msg[i+3], i+4) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i+7]);
}
#pragma unroll 4
for(int i=9;i<13;i++) {
q[i+16] = CONST_EXP2 +
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) +
ROTL64(msg[i+3], i+4) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i-9]);
}
#pragma unroll 3
for(int i=13;i<16;i++) {
q[i+16] = CONST_EXP2 +
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) +
ROTL64(msg[i-13], (i-13)+1) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i-9]);
}
uint64_t XL64 = q[16]^q[17]^q[18]^q[19]^q[20]^q[21]^q[22]^q[23];
uint64_t XH64 = XL64^q[24]^q[25]^q[26]^q[27]^q[28]^q[29]^q[30]^q[31];
hash[0] = (SHL(XH64, 5) ^ SHR(q[16],5) ^ msg[ 0]) + ( XL64 ^ q[24] ^ q[ 0]);
hash[1] = (SHR(XH64, 7) ^ SHL(q[17],8) ^ msg[ 1]) + ( XL64 ^ q[25] ^ q[ 1]);
hash[2] = (SHR(XH64, 5) ^ SHL(q[18],5) ^ msg[ 2]) + ( XL64 ^ q[26] ^ q[ 2]);
hash[3] = (SHR(XH64, 1) ^ SHL(q[19],5) ^ msg[ 3]) + ( XL64 ^ q[27] ^ q[ 3]);
hash[4] = (SHR(XH64, 3) ^ q[20] ^ msg[ 4]) + ( XL64 ^ q[28] ^ q[ 4]);
hash[5] = (SHL(XH64, 6) ^ SHR(q[21],6) ^ msg[ 5]) + ( XL64 ^ q[29] ^ q[ 5]);
hash[6] = (SHR(XH64, 4) ^ SHL(q[22],6) ^ msg[ 6]) + ( XL64 ^ q[30] ^ q[ 6]);
hash[7] = (SHR(XH64,11) ^ SHL(q[23],2) ^ msg[ 7]) + ( XL64 ^ q[31] ^ q[ 7]);
hash[ 8] = ROTL64(hash[4], 9) + ( XH64 ^ q[24] ^ msg[ 8]) + (SHL(XL64,8) ^ q[23] ^ q[ 8]);
hash[ 9] = ROTL64(hash[5],10) + ( XH64 ^ q[25] ^ msg[ 9]) + (SHR(XL64,6) ^ q[16] ^ q[ 9]);
hash[10] = ROTL64(hash[6],11) + ( XH64 ^ q[26] ^ msg[10]) + (SHL(XL64,6) ^ q[17] ^ q[10]);
hash[11] = ROTL64(hash[7],12) + ( XH64 ^ q[27] ^ msg[11]) + (SHL(XL64,4) ^ q[18] ^ q[11]);
hash[12] = ROTL64(hash[0],13) + ( XH64 ^ q[28] ^ msg[12]) + (SHR(XL64,3) ^ q[19] ^ q[12]);
hash[13] = ROTL64(hash[1],14) + ( XH64 ^ q[29] ^ msg[13]) + (SHR(XL64,4) ^ q[20] ^ q[13]);
hash[14] = ROTL64(hash[2],15) + ( XH64 ^ q[30] ^ msg[14]) + (SHR(XL64,7) ^ q[21] ^ q[14]);
hash[15] = ROTL64(hash[3],16) + ( XH64 ^ q[31] ^ msg[15]) + (SHR(XL64,2) ^ q[22] ^ q[15]);
}
static __constant__ uint64_t d_constMem[16];
static uint64_t h_constMem[16] = {
SPH_C64(0x8081828384858687),
SPH_C64(0x88898A8B8C8D8E8F),
SPH_C64(0x9091929394959697),
SPH_C64(0x98999A9B9C9D9E9F),
SPH_C64(0xA0A1A2A3A4A5A6A7),
SPH_C64(0xA8A9AAABACADAEAF),
SPH_C64(0xB0B1B2B3B4B5B6B7),
SPH_C64(0xB8B9BABBBCBDBEBF),
SPH_C64(0xC0C1C2C3C4C5C6C7),
SPH_C64(0xC8C9CACBCCCDCECF),
SPH_C64(0xD0D1D2D3D4D5D6D7),
SPH_C64(0xD8D9DADBDCDDDEDF),
SPH_C64(0xE0E1E2E3E4E5E6E7),
SPH_C64(0xE8E9EAEBECEDEEEF),
SPH_C64(0xF0F1F2F3F4F5F6F7),
SPH_C64(0xF8F9FAFBFCFDFEFF)
};
__global__ void quark_bmw512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint64_t *inpHash = &g_hash[8 * hashPosition];
// Init
uint64_t h[16];
/*
h[ 0] = SPH_C64(0x8081828384858687);
h[ 1] = SPH_C64(0x88898A8B8C8D8E8F);
h[ 2] = SPH_C64(0x9091929394959697);
h[ 3] = SPH_C64(0x98999A9B9C9D9E9F);
h[ 4] = SPH_C64(0xA0A1A2A3A4A5A6A7);
h[ 5] = SPH_C64(0xA8A9AAABACADAEAF);
h[ 6] = SPH_C64(0xB0B1B2B3B4B5B6B7);
h[ 7] = SPH_C64(0xB8B9BABBBCBDBEBF);
h[ 8] = SPH_C64(0xC0C1C2C3C4C5C6C7);
h[ 9] = SPH_C64(0xC8C9CACBCCCDCECF);
h[10] = SPH_C64(0xD0D1D2D3D4D5D6D7);
h[11] = SPH_C64(0xD8D9DADBDCDDDEDF);
h[12] = SPH_C64(0xE0E1E2E3E4E5E6E7);
h[13] = SPH_C64(0xE8E9EAEBECEDEEEF);
h[14] = SPH_C64(0xF0F1F2F3F4F5F6F7);
h[15] = SPH_C64(0xF8F9FAFBFCFDFEFF);
*/
#pragma unroll 16
for(int i=0;i<16;i++)
h[i] = d_constMem[i];
// Nachricht kopieren (Achtung, die Nachricht hat 64 Byte,
// BMW arbeitet mit 128 Byte!!!
uint64_t message[16];
#pragma unroll 8
for(int i=0;i<8;i++)
message[i] = inpHash[i];
#pragma unroll 6
for(int i=9;i<15;i++)
message[i] = 0;
// Padding einf<6E>gen (Byteorder?!?)
message[8] = SPH_C64(0x80);
// L<>nge (in Bits, d.h. 64 Byte * 8 = 512 Bits
message[15] = SPH_C64(512);
// Compression 1
Compression512(message, h);
// Final
#pragma unroll 16
for(int i=0;i<16;i++)
message[i] = 0xaaaaaaaaaaaaaaa0ull + (uint64_t)i;
Compression512(h, message);
// fertig
uint64_t *outpHash = &g_hash[8 * hashPosition];
#pragma unroll 8
for(int i=0;i<8;i++)
outpHash[i] = message[i+8];
}
}
__global__ void quark_bmw512_gpu_hash_80(int threads, uint32_t startNounce, uint64_t *g_hash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = startNounce + thread;
// Init
uint64_t h[16];
#pragma unroll 16
for(int i=0;i<16;i++)
h[i] = d_constMem[i];
// Nachricht kopieren (Achtung, die Nachricht hat 64 Byte,
// BMW arbeitet mit 128 Byte!!!
uint64_t message[16];
#pragma unroll 16
for(int i=0;i<16;i++)
message[i] = c_PaddedMessage80[i];
// die Nounce durch die thread-spezifische ersetzen
message[9] = REPLACE_HIWORD(message[9], cuda_swab32(nounce));
// Compression 1
Compression512(message, h);
// Final
#pragma unroll 16
for(int i=0;i<16;i++)
message[i] = 0xaaaaaaaaaaaaaaa0ull + (uint64_t)i;
Compression512(h, message);
// fertig
uint64_t *outpHash = &g_hash[8 * thread];
#pragma unroll 8
for(int i=0;i<8;i++)
outpHash[i] = message[i+8];
}
}
// Setup-Funktionen
__host__ void quark_bmw512_cpu_init(int thr_id, int threads)
{
// nix zu tun ;-)
// jetzt schon :D
cudaMemcpyToSymbol( d_constMem,
h_constMem,
sizeof(h_constMem),
0, cudaMemcpyHostToDevice);
}
// Bmw512 f<>r 80 Byte grosse Eingangsdaten
__host__ void quark_bmw512_cpu_setBlock_80(void *pdata)
{
// Message mit Padding bereitstellen
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen.
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 48);
uint64_t *message = (uint64_t*)PaddedMessage;
// Padding einf<6E>gen (Byteorder?!?)
message[10] = SPH_C64(0x80);
// L<>nge (in Bits, d.h. 80 Byte * 8 = 640 Bits
message[15] = SPH_C64(640);
// die Message zur Berechnung auf der GPU
cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
}
__host__ void quark_bmw512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Gr<47><72>e des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
quark_bmw512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}
__host__ void quark_bmw512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order)
{
const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Gr<47><72>e des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
quark_bmw512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash);
MyStreamSynchronize(NULL, order, thr_id);
}