1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-10 14:57:53 +00:00
ccminer/x11/x11evo.cu

413 lines
10 KiB
Plaintext
Raw Normal View History

/**
* X11EVO algo implementation
* Cuda implementation by tpruvot@github - May 2016
*/
#include <stdio.h>
#include <memory.h>
extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_bmw.h"
#include "sph/sph_groestl.h"
#include "sph/sph_skein.h"
#include "sph/sph_jh.h"
#include "sph/sph_keccak.h"
#include "sph/sph_luffa.h"
#include "sph/sph_cubehash.h"
#include "sph/sph_shavite.h"
#include "sph/sph_simd.h"
#include "sph/sph_echo.h"
}
#include "miner.h"
#include "cuda_helper.h"
#include "cuda_x11.h"
static uint32_t *d_hash[MAX_GPUS];
enum Algo {
BLAKE = 0,
BMW,
GROESTL,
SKEIN,
JH,
KECCAK,
LUFFA,
CUBEHASH,
SHAVITE,
SIMD,
ECHO,
HASH_FUNC_COUNT
};
static void swap8(uint8_t *a, uint8_t *b)
{
uint8_t t = *a;
*a = *b;
*b = t;
}
static void initPerm(uint8_t n[], int count)
{
for (int i = 0; i < count; i++)
n[i] = i;
}
static int nextPerm(uint8_t n[], int count)
{
int tail, i, j;
if (count <= 1)
return 0;
for (i = count - 1; i>0 && n[i - 1] >= n[i]; i--);
tail = i;
if (tail > 0) {
for (j = count - 1; j>tail && n[j] <= n[tail - 1]; j--);
swap8(&n[tail - 1], &n[j]);
}
for (i = tail, j = count - 1; i<j; i++, j--)
swap8(&n[i], &n[j]);
return (tail != 0);
}
static void getAlgoString(char *str, int seq)
{
uint8_t algoList[HASH_FUNC_COUNT];
char *sptr;
initPerm(algoList, HASH_FUNC_COUNT);
for (int k = 0; k < seq; k++) {
nextPerm(algoList, HASH_FUNC_COUNT);
}
sptr = str;
for (int j = 0; j < HASH_FUNC_COUNT; j++) {
if (algoList[j] >= 10)
sprintf(sptr, "%c", 'A' + (algoList[j] - 10));
else
sprintf(sptr, "%u", (uint32_t) algoList[j]);
sptr++;
}
*sptr = '\0';
//applog(LOG_DEBUG, "nextPerm %s", str);
}
static __thread uint32_t s_ntime = 0;
static char hashOrder[HASH_FUNC_COUNT + 1] = { 0 };
static int s_sequence = -1;
#define INITIAL_DATE 0x57254700
static inline int getCurrentAlgoSeq(uint32_t current_time)
{
// change once per day
return (int) (current_time - INITIAL_DATE) / (60 * 60 * 24);
}
static void evo_twisted_code(uint32_t ntime, char *permstr)
{
int seq = getCurrentAlgoSeq(ntime);
if (s_sequence != seq) {
getAlgoString(permstr, seq);
s_sequence = seq;
}
}
// X11evo CPU Hash
extern "C" void x11evo_hash(void *output, const void *input)
{
uint32_t _ALIGN(64) hash[64/4] = { 0 };
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;
sph_groestl512_context ctx_groestl;
sph_skein512_context ctx_skein;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_luffa512_context ctx_luffa1;
sph_cubehash512_context ctx_cubehash1;
sph_shavite512_context ctx_shavite1;
sph_simd512_context ctx_simd1;
sph_echo512_context ctx_echo1;
if (s_sequence == -1) {
uint32_t *data = (uint32_t*) input;
const uint32_t ntime = data[17];
evo_twisted_code(ntime, hashOrder);
}
void *in = (void*) input;
int size = 80;
const int hashes = (int) strlen(hashOrder);
for (int i = 0; i < hashes; i++)
{
const char elem = hashOrder[i];
uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
if (i > 0) {
in = (void*) hash;
size = 64;
}
switch (algo) {
case BLAKE:
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, in, size);
sph_blake512_close(&ctx_blake, hash);
break;
case BMW:
sph_bmw512_init(&ctx_bmw);
sph_bmw512(&ctx_bmw, in, size);
sph_bmw512_close(&ctx_bmw, hash);
break;
case GROESTL:
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, in, size);
sph_groestl512_close(&ctx_groestl, hash);
break;
case SKEIN:
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, in, size);
sph_skein512_close(&ctx_skein, hash);
break;
case JH:
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, in, size);
sph_jh512_close(&ctx_jh, hash);
break;
case KECCAK:
sph_keccak512_init(&ctx_keccak);
sph_keccak512(&ctx_keccak, in, size);
sph_keccak512_close(&ctx_keccak, hash);
break;
case LUFFA:
sph_luffa512_init(&ctx_luffa1);
sph_luffa512(&ctx_luffa1, in, size);
sph_luffa512_close(&ctx_luffa1, hash);
break;
case CUBEHASH:
sph_cubehash512_init(&ctx_cubehash1);
sph_cubehash512(&ctx_cubehash1, in, size);
sph_cubehash512_close(&ctx_cubehash1, hash);
break;
case SHAVITE:
sph_shavite512_init(&ctx_shavite1);
sph_shavite512(&ctx_shavite1, in, size);
sph_shavite512_close(&ctx_shavite1, hash);
break;
case SIMD:
sph_simd512_init(&ctx_simd1);
sph_simd512(&ctx_simd1, in, size);
sph_simd512_close(&ctx_simd1, hash);
break;
case ECHO:
sph_echo512_init(&ctx_echo1);
sph_echo512(&ctx_echo1, in, size);
sph_echo512_close(&ctx_echo1, hash);
break;
}
}
memcpy(output, hash, 32);
}
//#define _DEBUG
#define _DEBUG_PREFIX "evo"
#include "cuda_debug.cuh"
static bool init[MAX_GPUS] = { 0 };
extern void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order);
extern "C" int scanhash_x11evo(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 20 : 19;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 19=256*256*8;
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_debug || s_ntime != pdata[17] || s_sequence == -1) {
uint32_t ntime = swab32(work->data[17]);
evo_twisted_code(ntime, hashOrder);
s_ntime = pdata[17];
if (opt_debug) {
int secs = (int) (ntime - INITIAL_DATE) % (60 * 60 * 24);
secs = (60 * 60 * 24) - secs;
applog(LOG_DEBUG, "evo hash order %s, next in %d mn", hashOrder, secs/60);
}
}
if (opt_benchmark)
ptarget[7] = 0x5;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
quark_blake512_cpu_init(thr_id, throughput);
quark_bmw512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
quark_keccak512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
x11_luffa512_cpu_init(thr_id, throughput);
x11_cubehash512_cpu_init(thr_id, throughput);
x11_shavite512_cpu_init(thr_id, throughput);
x11_echo512_cpu_init(thr_id, throughput);
if (x11_simd512_cpu_init(thr_id, throughput) != 0) {
return 0;
}
CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput), 0);
cuda_check_cpu_init(thr_id, throughput);
init[thr_id] = true;
}
uint32_t endiandata[20];
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
cuda_check_cpu_setTarget(ptarget);
quark_blake512_cpu_setBlock_80(thr_id, endiandata);
const int hashes = (int) strlen(hashOrder);
do {
int order = 1;
uint32_t foundNonce;
// Hash with CUDA
quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]);
TRACE("blake80:");
for (int i = 1; i < hashes; i++)
{
const char elem = hashOrder[i];
const uint8_t algo64 = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch (algo64) {
case BLAKE:
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("blake :");
break;
case BMW:
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("bmw :");
break;
case GROESTL:
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("groestl:");
break;
case SKEIN:
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("skein :");
break;
case JH:
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("jh512 :");
break;
case KECCAK:
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("keccak :");
break;
case LUFFA:
x11_luffa512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("luffa :");
break;
case CUBEHASH:
x11_cubehash512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("cube :");
break;
case SHAVITE:
x11_shavite512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("shavite:");
break;
case SIMD:
x11_simd512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("simd :");
break;
case ECHO:
x11_echo512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("echo => ");
break;
}
}
foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
if (foundNonce != UINT32_MAX)
{
uint32_t _ALIGN(64) vhash64[8];
const uint32_t Htarg = ptarget[7];
be32enc(&endiandata[19], foundNonce);
x11evo_hash(vhash64, endiandata);
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) {
int res = 1;
// check if there was some other ones...
uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
work_set_target_ratio(work, vhash64);
*hashes_done = pdata[19] - first_nonce + throughput;
if (secNonce != 0) {
be32enc(&endiandata[19], secNonce);
x11evo_hash(vhash64, endiandata);
if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio)
work_set_target_ratio(work, vhash64);
pdata[21] = secNonce;
res++;
}
pdata[19] = foundNonce;
return res;
} else {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce);
pdata[19] = foundNonce + 1;
continue;
}
}
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
return 0;
}
// cleanup
extern "C" void free_x11evo(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFree(d_hash[thr_id]);
quark_blake512_cpu_free(thr_id);
quark_groestl512_cpu_free(thr_id);
x11_simd512_cpu_free(thr_id);
cuda_check_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}