GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

243 lines
6.8 KiB

/**
* Lbry Algo (sha-256 / sha-512 / ripemd)
*
* tpruvot and Provos Alexis - Jan 2017
*
* Sponsored by LBRY.IO team
*/
#include <string.h>
#include <stdint.h>
extern "C" {
#include <sph/sph_sha2.h>
#include <sph/sph_ripemd.h>
}
#include <cuda_helper.h>
#include <miner.h>
#define A 64
#define debug_cpu 0
extern "C" void lbry_hash(void* output, const void* input)
{
uint32_t _ALIGN(A) hashA[16];
uint32_t _ALIGN(A) hashB[8];
uint32_t _ALIGN(A) hashC[8];
sph_sha256_context ctx_sha256;
sph_sha512_context ctx_sha512;
sph_ripemd160_context ctx_ripemd;
sph_sha256_init(&ctx_sha256);
sph_sha256(&ctx_sha256, input, 112);
sph_sha256_close(&ctx_sha256, hashA);
sph_sha256(&ctx_sha256, hashA, 32);
sph_sha256_close(&ctx_sha256, hashA);
sph_sha512_init(&ctx_sha512);
sph_sha512(&ctx_sha512, hashA, 32);
sph_sha512_close(&ctx_sha512, hashA);
sph_ripemd160_init(&ctx_ripemd);
sph_ripemd160(&ctx_ripemd, hashA, 32); // sha512 low
sph_ripemd160_close(&ctx_ripemd, hashB);
if (debug_cpu) applog_hex(hashB, 20);
sph_ripemd160(&ctx_ripemd, &hashA[8], 32); // sha512 high
sph_ripemd160_close(&ctx_ripemd, hashC);
if (debug_cpu) applog_hex(hashC, 20);
sph_sha256(&ctx_sha256, hashB, 20);
sph_sha256(&ctx_sha256, hashC, 20);
sph_sha256_close(&ctx_sha256, hashA);
if (debug_cpu) applog_hex(hashA,32);
sph_sha256(&ctx_sha256, hashA, 32);
sph_sha256_close(&ctx_sha256, hashA);
memcpy(output, hashA, 32);
}
/* ############################################################################################################################### */
extern void lbry_sha256_init(int thr_id);
extern void lbry_sha256_free(int thr_id);
extern void lbry_sha256_setBlock_112(uint32_t *pdata);
extern void lbry_sha256d_hash_112(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_outputHash);
extern void lbry_sha512_init(int thr_id);
extern void lbry_sha512_hash_32(int thr_id, uint32_t threads, uint32_t *d_hash);
extern void lbry_sha256d_hash_final(int thr_id, uint32_t threads, uint32_t *d_inputHash, uint32_t *d_resNonce, const uint64_t target64);
extern void lbry_sha256_setBlock_112_merged(uint32_t *pdata);
extern void lbry_merged(int thr_id,uint32_t startNonce, uint32_t threads, uint32_t *d_resNonce, const uint64_t target64);
static __inline uint32_t swab32_if(uint32_t val, bool iftrue) {
return iftrue ? swab32(val) : val;
}
static bool init[MAX_GPUS] = { 0 };
static uint32_t *d_hash[MAX_GPUS];
static uint32_t *d_resNonce[MAX_GPUS];
// nonce position is different
#define LBC_NONCE_OFT32 27
extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(A) endiandata[28];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[LBC_NONCE_OFT32];
const int swap = 0; // to toggle nonce endian (need kernel change)
const int dev_id = device_map[thr_id];
const bool merged_kernel = (device_sm[dev_id] > 500);
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 22 : 20;
if (device_sm[dev_id] >= 600) intensity = 23;
if (device_sm[dev_id] < 350) intensity = 18;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark) {
ptarget[7] = 0xf;
}
if (!init[thr_id]){
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
cuda_get_arch(thr_id);
if (CUDART_VERSION == 6050) {
applog(LOG_ERR, "This lbry kernel is not compatible with CUDA 6.5!");
proper_exit(EXIT_FAILURE);
}
if (!merged_kernel)
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)64 * throughput));
CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], 2 * sizeof(uint32_t)));
CUDA_LOG_ERROR();
init[thr_id] = true;
}
for (int i=0; i < LBC_NONCE_OFT32; i++) {
be32enc(&endiandata[i], pdata[i]);
}
if (merged_kernel)
lbry_sha256_setBlock_112_merged(endiandata);
else
lbry_sha256_setBlock_112(endiandata);
cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t));
do {
uint32_t resNonces[2] = { UINT32_MAX, UINT32_MAX };
// Hash with CUDA
if (merged_kernel) {
lbry_merged(thr_id, pdata[LBC_NONCE_OFT32], throughput, d_resNonce[thr_id], AS_U64(&ptarget[6]));
} else {
lbry_sha256d_hash_112(thr_id, throughput, pdata[LBC_NONCE_OFT32], d_hash[thr_id]);
lbry_sha512_hash_32(thr_id, throughput, d_hash[thr_id]);
lbry_sha256d_hash_final(thr_id, throughput, d_hash[thr_id], d_resNonce[thr_id], AS_U64(&ptarget[6]));
}
*hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce + throughput;
cudaMemcpy(resNonces, d_resNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (resNonces[0] != UINT32_MAX)
{
uint32_t _ALIGN(A) vhash[8];
const uint32_t Htarg = ptarget[7];
const uint32_t startNonce = pdata[LBC_NONCE_OFT32];
resNonces[0] += startNonce;
endiandata[LBC_NONCE_OFT32] = swab32_if(resNonces[0], !swap);
lbry_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget))
{
work->nonces[0] = swab32_if(resNonces[0], swap);
work_set_target_ratio(work, vhash);
work->valid_nonces = 1;
if (resNonces[1] != UINT32_MAX)
{
resNonces[1] += startNonce;
endiandata[LBC_NONCE_OFT32] = swab32_if(resNonces[1], !swap);
lbry_hash(vhash, endiandata);
work->nonces[1] = swab32_if(resNonces[1], swap);
if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio[0]) {
// best first
xchg(work->nonces[1], work->nonces[0]);
work->sharediff[1] = work->sharediff[0];
work->shareratio[1] = work->shareratio[0];
work_set_target_ratio(work, vhash);
} else {
bn_set_target_ratio(work, vhash, 1);
}
work->valid_nonces++;
}
pdata[LBC_NONCE_OFT32] = max(work->nonces[0], work->nonces[1]); // next scan start
return work->valid_nonces;
}
else if (vhash[7] > Htarg) {
gpu_increment_reject(thr_id);
if (!opt_quiet)
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", resNonces[0]);
cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t));
}
}
if ((uint64_t) throughput + pdata[LBC_NONCE_OFT32] >= max_nonce) {
pdata[LBC_NONCE_OFT32] = max_nonce;
break;
}
pdata[LBC_NONCE_OFT32] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce;
return 0;
}
// cleanup
void free_lbry(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
if(device_sm[device_map[thr_id]] <= 500)
cudaFree(d_hash[thr_id]);
cudaFree(d_resNonce[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}