1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-25 22:14:30 +00:00
ccminer/sph/haval.c

984 lines
33 KiB
C
Raw Normal View History

/* $Id: haval.c 227 2010-06-16 17:28:38Z tp $ */
/*
* HAVAL implementation.
*
* The HAVAL reference paper is of questionable clarity with regards to
* some details such as endianness of bits within a byte, bytes within
* a 32-bit word, or the actual ordering of words within a stream of
* words. This implementation has been made compatible with the reference
* implementation available on: http://labs.calyptix.com/haval.php
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "sph_haval.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_HAVAL
#define SPH_SMALL_FOOTPRINT_HAVAL 1
#endif
/*
* Basic definition from the reference paper.
*
#define F1(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)) ^ ((x0) & (x1)) ^ (x0))
*
*/
#define F1(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & ((x0) ^ (x4))) ^ ((x2) & (x5)) ^ ((x3) & (x6)) ^ (x0))
/*
* Basic definition from the reference paper.
*
#define F2(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x2) & (x3)) ^ ((x2) & (x4) & (x5)) ^ ((x1) & (x2)) \
^ ((x1) & (x4)) ^ ((x2) & (x6)) ^ ((x3) & (x5)) \
^ ((x4) & (x5)) ^ ((x0) & (x2)) ^ (x0))
*
*/
#define F2(x6, x5, x4, x3, x2, x1, x0) \
(((x2) & (((x1) & ~(x3)) ^ ((x4) & (x5)) ^ (x6) ^ (x0))) \
^ ((x4) & ((x1) ^ (x5))) ^ ((x3 & (x5)) ^ (x0)))
/*
* Basic definition from the reference paper.
*
#define F3(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x2) & (x3)) ^ ((x1) & (x4)) ^ ((x2) & (x5)) \
^ ((x3) & (x6)) ^ ((x0) & (x3)) ^ (x0))
*
*/
#define F3(x6, x5, x4, x3, x2, x1, x0) \
(((x3) & (((x1) & (x2)) ^ (x6) ^ (x0))) \
^ ((x1) & (x4)) ^ ((x2) & (x5)) ^ (x0))
/*
* Basic definition from the reference paper.
*
#define F4(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x2) & (x3)) ^ ((x2) & (x4) & (x5)) ^ ((x3) & (x4) & (x6)) \
^ ((x1) & (x4)) ^ ((x2) & (x6)) ^ ((x3) & (x4)) ^ ((x3) & (x5)) \
^ ((x3) & (x6)) ^ ((x4) & (x5)) ^ ((x4) & (x6)) ^ ((x0) & (x4)) ^ (x0))
*
*/
#define F4(x6, x5, x4, x3, x2, x1, x0) \
(((x3) & (((x1) & (x2)) ^ ((x4) | (x6)) ^ (x5))) \
^ ((x4) & ((~(x2) & (x5)) ^ (x1) ^ (x6) ^ (x0))) \
^ ((x2) & (x6)) ^ (x0))
/*
* Basic definition from the reference paper.
*
#define F5(x6, x5, x4, x3, x2, x1, x0) \
(((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)) \
^ ((x0) & (x1) & (x2) & (x3)) ^ ((x0) & (x5)) ^ (x0))
*
*/
#define F5(x6, x5, x4, x3, x2, x1, x0) \
(((x0) & ~(((x1) & (x2) & (x3)) ^ (x5))) \
^ ((x1) & (x4)) ^ ((x2) & (x5)) ^ ((x3) & (x6)))
/*
* The macros below integrate the phi() permutations, depending on the
* pass and the total number of passes.
*/
#define FP3_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x1, x0, x3, x5, x6, x2, x4)
#define FP3_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x4, x2, x1, x0, x5, x3, x6)
#define FP3_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x6, x1, x2, x3, x4, x5, x0)
#define FP4_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x2, x6, x1, x4, x5, x3, x0)
#define FP4_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x3, x5, x2, x0, x1, x6, x4)
#define FP4_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x1, x4, x3, x6, x0, x2, x5)
#define FP4_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x6, x4, x0, x5, x2, x1, x3)
#define FP5_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x3, x4, x1, x0, x5, x2, x6)
#define FP5_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x6, x2, x1, x0, x3, x4, x5)
#define FP5_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x2, x6, x0, x4, x3, x1, x5)
#define FP5_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x1, x5, x3, x2, x0, x4, x6)
#define FP5_5(x6, x5, x4, x3, x2, x1, x0) \
F5(x2, x5, x0, x6, x4, x3, x1)
/*
* One step, for "n" passes, pass number "p" (1 <= p <= n), using
* input word number "w" and step constant "c".
*/
#define STEP(n, p, x7, x6, x5, x4, x3, x2, x1, x0, w, c) do { \
sph_u32 t = FP ## n ## _ ## p(x6, x5, x4, x3, x2, x1, x0); \
(x7) = SPH_T32(SPH_ROTR32(t, 7) + SPH_ROTR32((x7), 11) \
+ (w) + (c)); \
} while (0)
/*
* PASSy(n, in) computes pass number "y", for a total of "n", using the
* one-argument macro "in" to access input words. Current state is assumed
* to be held in variables "s0" to "s7".
*/
#if SPH_SMALL_FOOTPRINT_HAVAL
#define PASS1(n, in) do { \
unsigned pass_count; \
for (pass_count = 0; pass_count < 32; pass_count += 8) { \
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, \
in(pass_count + 0), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, \
in(pass_count + 1), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, \
in(pass_count + 2), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, \
in(pass_count + 3), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, \
in(pass_count + 4), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, \
in(pass_count + 5), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, \
in(pass_count + 6), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, \
in(pass_count + 7), SPH_C32(0x00000000)); \
} \
} while (0)
#define PASSG(p, n, in) do { \
unsigned pass_count; \
for (pass_count = 0; pass_count < 32; pass_count += 8) { \
STEP(n, p, s7, s6, s5, s4, s3, s2, s1, s0, \
in(MP ## p[pass_count + 0]), \
RK ## p[pass_count + 0]); \
STEP(n, p, s6, s5, s4, s3, s2, s1, s0, s7, \
in(MP ## p[pass_count + 1]), \
RK ## p[pass_count + 1]); \
STEP(n, p, s5, s4, s3, s2, s1, s0, s7, s6, \
in(MP ## p[pass_count + 2]), \
RK ## p[pass_count + 2]); \
STEP(n, p, s4, s3, s2, s1, s0, s7, s6, s5, \
in(MP ## p[pass_count + 3]), \
RK ## p[pass_count + 3]); \
STEP(n, p, s3, s2, s1, s0, s7, s6, s5, s4, \
in(MP ## p[pass_count + 4]), \
RK ## p[pass_count + 4]); \
STEP(n, p, s2, s1, s0, s7, s6, s5, s4, s3, \
in(MP ## p[pass_count + 5]), \
RK ## p[pass_count + 5]); \
STEP(n, p, s1, s0, s7, s6, s5, s4, s3, s2, \
in(MP ## p[pass_count + 6]), \
RK ## p[pass_count + 6]); \
STEP(n, p, s0, s7, s6, s5, s4, s3, s2, s1, \
in(MP ## p[pass_count + 7]), \
RK ## p[pass_count + 7]); \
} \
} while (0)
#define PASS2(n, in) PASSG(2, n, in)
#define PASS3(n, in) PASSG(3, n, in)
#define PASS4(n, in) PASSG(4, n, in)
#define PASS5(n, in) PASSG(5, n, in)
static const unsigned MP2[32] = {
5, 14, 26, 18, 11, 28, 7, 16,
0, 23, 20, 22, 1, 10, 4, 8,
30, 3, 21, 9, 17, 24, 29, 6,
19, 12, 15, 13, 2, 25, 31, 27
};
static const unsigned MP3[32] = {
19, 9, 4, 20, 28, 17, 8, 22,
29, 14, 25, 12, 24, 30, 16, 26,
31, 15, 7, 3, 1, 0, 18, 27,
13, 6, 21, 10, 23, 11, 5, 2
};
static const unsigned MP4[32] = {
24, 4, 0, 14, 2, 7, 28, 23,
26, 6, 30, 20, 18, 25, 19, 3,
22, 11, 31, 21, 8, 27, 12, 9,
1, 29, 5, 15, 17, 10, 16, 13
};
static const unsigned MP5[32] = {
27, 3, 21, 26, 17, 11, 20, 29,
19, 0, 12, 7, 13, 8, 31, 10,
5, 9, 14, 30, 18, 6, 28, 24,
2, 23, 16, 22, 4, 1, 25, 15
};
static const sph_u32 RK2[32] = {
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917),
SPH_C32(0x9216D5D9), SPH_C32(0x8979FB1B),
SPH_C32(0xD1310BA6), SPH_C32(0x98DFB5AC),
SPH_C32(0x2FFD72DB), SPH_C32(0xD01ADFB7),
SPH_C32(0xB8E1AFED), SPH_C32(0x6A267E96),
SPH_C32(0xBA7C9045), SPH_C32(0xF12C7F99),
SPH_C32(0x24A19947), SPH_C32(0xB3916CF7),
SPH_C32(0x0801F2E2), SPH_C32(0x858EFC16),
SPH_C32(0x636920D8), SPH_C32(0x71574E69),
SPH_C32(0xA458FEA3), SPH_C32(0xF4933D7E),
SPH_C32(0x0D95748F), SPH_C32(0x728EB658),
SPH_C32(0x718BCD58), SPH_C32(0x82154AEE),
SPH_C32(0x7B54A41D), SPH_C32(0xC25A59B5)
};
static const sph_u32 RK3[32] = {
SPH_C32(0x9C30D539), SPH_C32(0x2AF26013),
SPH_C32(0xC5D1B023), SPH_C32(0x286085F0),
SPH_C32(0xCA417918), SPH_C32(0xB8DB38EF),
SPH_C32(0x8E79DCB0), SPH_C32(0x603A180E),
SPH_C32(0x6C9E0E8B), SPH_C32(0xB01E8A3E),
SPH_C32(0xD71577C1), SPH_C32(0xBD314B27),
SPH_C32(0x78AF2FDA), SPH_C32(0x55605C60),
SPH_C32(0xE65525F3), SPH_C32(0xAA55AB94),
SPH_C32(0x57489862), SPH_C32(0x63E81440),
SPH_C32(0x55CA396A), SPH_C32(0x2AAB10B6),
SPH_C32(0xB4CC5C34), SPH_C32(0x1141E8CE),
SPH_C32(0xA15486AF), SPH_C32(0x7C72E993),
SPH_C32(0xB3EE1411), SPH_C32(0x636FBC2A),
SPH_C32(0x2BA9C55D), SPH_C32(0x741831F6),
SPH_C32(0xCE5C3E16), SPH_C32(0x9B87931E),
SPH_C32(0xAFD6BA33), SPH_C32(0x6C24CF5C)
};
static const sph_u32 RK4[32] = {
SPH_C32(0x7A325381), SPH_C32(0x28958677),
SPH_C32(0x3B8F4898), SPH_C32(0x6B4BB9AF),
SPH_C32(0xC4BFE81B), SPH_C32(0x66282193),
SPH_C32(0x61D809CC), SPH_C32(0xFB21A991),
SPH_C32(0x487CAC60), SPH_C32(0x5DEC8032),
SPH_C32(0xEF845D5D), SPH_C32(0xE98575B1),
SPH_C32(0xDC262302), SPH_C32(0xEB651B88),
SPH_C32(0x23893E81), SPH_C32(0xD396ACC5),
SPH_C32(0x0F6D6FF3), SPH_C32(0x83F44239),
SPH_C32(0x2E0B4482), SPH_C32(0xA4842004),
SPH_C32(0x69C8F04A), SPH_C32(0x9E1F9B5E),
SPH_C32(0x21C66842), SPH_C32(0xF6E96C9A),
SPH_C32(0x670C9C61), SPH_C32(0xABD388F0),
SPH_C32(0x6A51A0D2), SPH_C32(0xD8542F68),
SPH_C32(0x960FA728), SPH_C32(0xAB5133A3),
SPH_C32(0x6EEF0B6C), SPH_C32(0x137A3BE4)
};
static const sph_u32 RK5[32] = {
SPH_C32(0xBA3BF050), SPH_C32(0x7EFB2A98),
SPH_C32(0xA1F1651D), SPH_C32(0x39AF0176),
SPH_C32(0x66CA593E), SPH_C32(0x82430E88),
SPH_C32(0x8CEE8619), SPH_C32(0x456F9FB4),
SPH_C32(0x7D84A5C3), SPH_C32(0x3B8B5EBE),
SPH_C32(0xE06F75D8), SPH_C32(0x85C12073),
SPH_C32(0x401A449F), SPH_C32(0x56C16AA6),
SPH_C32(0x4ED3AA62), SPH_C32(0x363F7706),
SPH_C32(0x1BFEDF72), SPH_C32(0x429B023D),
SPH_C32(0x37D0D724), SPH_C32(0xD00A1248),
SPH_C32(0xDB0FEAD3), SPH_C32(0x49F1C09B),
SPH_C32(0x075372C9), SPH_C32(0x80991B7B),
SPH_C32(0x25D479D8), SPH_C32(0xF6E8DEF7),
SPH_C32(0xE3FE501A), SPH_C32(0xB6794C3B),
SPH_C32(0x976CE0BD), SPH_C32(0x04C006BA),
SPH_C32(0xC1A94FB6), SPH_C32(0x409F60C4)
};
#else
#define PASS1(n, in) do { \
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in( 0), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in( 1), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in( 2), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in( 3), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in( 4), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in( 5), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in( 6), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in( 7), SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in( 8), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in( 9), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in(10), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in(11), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in(12), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in(13), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in(14), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in(15), SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in(16), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in(17), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in(18), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in(19), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in(20), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in(21), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in(22), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in(23), SPH_C32(0x00000000)); \
\
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, in(24), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, in(25), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, in(26), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, in(27), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, in(28), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, in(29), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, in(30), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, in(31), SPH_C32(0x00000000)); \
} while (0)
#define PASS2(n, in) do { \
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in( 5), SPH_C32(0x452821E6)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in(14), SPH_C32(0x38D01377)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(26), SPH_C32(0xBE5466CF)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in(18), SPH_C32(0x34E90C6C)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in(11), SPH_C32(0xC0AC29B7)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(28), SPH_C32(0xC97C50DD)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in( 7), SPH_C32(0x3F84D5B5)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in(16), SPH_C32(0xB5470917)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in( 0), SPH_C32(0x9216D5D9)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in(23), SPH_C32(0x8979FB1B)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(20), SPH_C32(0xD1310BA6)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in(22), SPH_C32(0x98DFB5AC)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in( 1), SPH_C32(0x2FFD72DB)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(10), SPH_C32(0xD01ADFB7)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in( 4), SPH_C32(0xB8E1AFED)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in( 8), SPH_C32(0x6A267E96)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in(30), SPH_C32(0xBA7C9045)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in( 3), SPH_C32(0xF12C7F99)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(21), SPH_C32(0x24A19947)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in( 9), SPH_C32(0xB3916CF7)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in(17), SPH_C32(0x0801F2E2)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(24), SPH_C32(0x858EFC16)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in(29), SPH_C32(0x636920D8)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in( 6), SPH_C32(0x71574E69)); \
\
STEP(n, 2, s7, s6, s5, s4, s3, s2, s1, s0, in(19), SPH_C32(0xA458FEA3)); \
STEP(n, 2, s6, s5, s4, s3, s2, s1, s0, s7, in(12), SPH_C32(0xF4933D7E)); \
STEP(n, 2, s5, s4, s3, s2, s1, s0, s7, s6, in(15), SPH_C32(0x0D95748F)); \
STEP(n, 2, s4, s3, s2, s1, s0, s7, s6, s5, in(13), SPH_C32(0x728EB658)); \
STEP(n, 2, s3, s2, s1, s0, s7, s6, s5, s4, in( 2), SPH_C32(0x718BCD58)); \
STEP(n, 2, s2, s1, s0, s7, s6, s5, s4, s3, in(25), SPH_C32(0x82154AEE)); \
STEP(n, 2, s1, s0, s7, s6, s5, s4, s3, s2, in(31), SPH_C32(0x7B54A41D)); \
STEP(n, 2, s0, s7, s6, s5, s4, s3, s2, s1, in(27), SPH_C32(0xC25A59B5)); \
} while (0)
#define PASS3(n, in) do { \
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(19), SPH_C32(0x9C30D539)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in( 9), SPH_C32(0x2AF26013)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in( 4), SPH_C32(0xC5D1B023)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in(20), SPH_C32(0x286085F0)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in(28), SPH_C32(0xCA417918)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in(17), SPH_C32(0xB8DB38EF)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in( 8), SPH_C32(0x8E79DCB0)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in(22), SPH_C32(0x603A180E)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(29), SPH_C32(0x6C9E0E8B)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in(14), SPH_C32(0xB01E8A3E)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in(25), SPH_C32(0xD71577C1)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in(12), SPH_C32(0xBD314B27)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in(24), SPH_C32(0x78AF2FDA)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in(30), SPH_C32(0x55605C60)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in(16), SPH_C32(0xE65525F3)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in(26), SPH_C32(0xAA55AB94)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(31), SPH_C32(0x57489862)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in(15), SPH_C32(0x63E81440)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in( 7), SPH_C32(0x55CA396A)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in( 3), SPH_C32(0x2AAB10B6)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in( 1), SPH_C32(0xB4CC5C34)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in( 0), SPH_C32(0x1141E8CE)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in(18), SPH_C32(0xA15486AF)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in(27), SPH_C32(0x7C72E993)); \
\
STEP(n, 3, s7, s6, s5, s4, s3, s2, s1, s0, in(13), SPH_C32(0xB3EE1411)); \
STEP(n, 3, s6, s5, s4, s3, s2, s1, s0, s7, in( 6), SPH_C32(0x636FBC2A)); \
STEP(n, 3, s5, s4, s3, s2, s1, s0, s7, s6, in(21), SPH_C32(0x2BA9C55D)); \
STEP(n, 3, s4, s3, s2, s1, s0, s7, s6, s5, in(10), SPH_C32(0x741831F6)); \
STEP(n, 3, s3, s2, s1, s0, s7, s6, s5, s4, in(23), SPH_C32(0xCE5C3E16)); \
STEP(n, 3, s2, s1, s0, s7, s6, s5, s4, s3, in(11), SPH_C32(0x9B87931E)); \
STEP(n, 3, s1, s0, s7, s6, s5, s4, s3, s2, in( 5), SPH_C32(0xAFD6BA33)); \
STEP(n, 3, s0, s7, s6, s5, s4, s3, s2, s1, in( 2), SPH_C32(0x6C24CF5C)); \
} while (0)
#define PASS4(n, in) do { \
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in(24), SPH_C32(0x7A325381)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in( 4), SPH_C32(0x28958677)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in( 0), SPH_C32(0x3B8F4898)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(14), SPH_C32(0x6B4BB9AF)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in( 2), SPH_C32(0xC4BFE81B)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in( 7), SPH_C32(0x66282193)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(28), SPH_C32(0x61D809CC)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in(23), SPH_C32(0xFB21A991)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in(26), SPH_C32(0x487CAC60)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in( 6), SPH_C32(0x5DEC8032)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in(30), SPH_C32(0xEF845D5D)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(20), SPH_C32(0xE98575B1)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in(18), SPH_C32(0xDC262302)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in(25), SPH_C32(0xEB651B88)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(19), SPH_C32(0x23893E81)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in( 3), SPH_C32(0xD396ACC5)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in(22), SPH_C32(0x0F6D6FF3)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in(11), SPH_C32(0x83F44239)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in(31), SPH_C32(0x2E0B4482)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(21), SPH_C32(0xA4842004)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in( 8), SPH_C32(0x69C8F04A)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in(27), SPH_C32(0x9E1F9B5E)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(12), SPH_C32(0x21C66842)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in( 9), SPH_C32(0xF6E96C9A)); \
\
STEP(n, 4, s7, s6, s5, s4, s3, s2, s1, s0, in( 1), SPH_C32(0x670C9C61)); \
STEP(n, 4, s6, s5, s4, s3, s2, s1, s0, s7, in(29), SPH_C32(0xABD388F0)); \
STEP(n, 4, s5, s4, s3, s2, s1, s0, s7, s6, in( 5), SPH_C32(0x6A51A0D2)); \
STEP(n, 4, s4, s3, s2, s1, s0, s7, s6, s5, in(15), SPH_C32(0xD8542F68)); \
STEP(n, 4, s3, s2, s1, s0, s7, s6, s5, s4, in(17), SPH_C32(0x960FA728)); \
STEP(n, 4, s2, s1, s0, s7, s6, s5, s4, s3, in(10), SPH_C32(0xAB5133A3)); \
STEP(n, 4, s1, s0, s7, s6, s5, s4, s3, s2, in(16), SPH_C32(0x6EEF0B6C)); \
STEP(n, 4, s0, s7, s6, s5, s4, s3, s2, s1, in(13), SPH_C32(0x137A3BE4)); \
} while (0)
#define PASS5(n, in) do { \
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in(27), SPH_C32(0xBA3BF050)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in( 3), SPH_C32(0x7EFB2A98)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(21), SPH_C32(0xA1F1651D)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in(26), SPH_C32(0x39AF0176)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in(17), SPH_C32(0x66CA593E)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in(11), SPH_C32(0x82430E88)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(20), SPH_C32(0x8CEE8619)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(29), SPH_C32(0x456F9FB4)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in(19), SPH_C32(0x7D84A5C3)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in( 0), SPH_C32(0x3B8B5EBE)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(12), SPH_C32(0xE06F75D8)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in( 7), SPH_C32(0x85C12073)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in(13), SPH_C32(0x401A449F)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in( 8), SPH_C32(0x56C16AA6)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(31), SPH_C32(0x4ED3AA62)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(10), SPH_C32(0x363F7706)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in( 5), SPH_C32(0x1BFEDF72)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in( 9), SPH_C32(0x429B023D)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(14), SPH_C32(0x37D0D724)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in(30), SPH_C32(0xD00A1248)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in(18), SPH_C32(0xDB0FEAD3)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in( 6), SPH_C32(0x49F1C09B)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(28), SPH_C32(0x075372C9)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(24), SPH_C32(0x80991B7B)); \
\
STEP(n, 5, s7, s6, s5, s4, s3, s2, s1, s0, in( 2), SPH_C32(0x25D479D8)); \
STEP(n, 5, s6, s5, s4, s3, s2, s1, s0, s7, in(23), SPH_C32(0xF6E8DEF7)); \
STEP(n, 5, s5, s4, s3, s2, s1, s0, s7, s6, in(16), SPH_C32(0xE3FE501A)); \
STEP(n, 5, s4, s3, s2, s1, s0, s7, s6, s5, in(22), SPH_C32(0xB6794C3B)); \
STEP(n, 5, s3, s2, s1, s0, s7, s6, s5, s4, in( 4), SPH_C32(0x976CE0BD)); \
STEP(n, 5, s2, s1, s0, s7, s6, s5, s4, s3, in( 1), SPH_C32(0x04C006BA)); \
STEP(n, 5, s1, s0, s7, s6, s5, s4, s3, s2, in(25), SPH_C32(0xC1A94FB6)); \
STEP(n, 5, s0, s7, s6, s5, s4, s3, s2, s1, in(15), SPH_C32(0x409F60C4)); \
} while (0)
#endif
#define SAVE_STATE \
sph_u32 u0, u1, u2, u3, u4, u5, u6, u7; \
do { \
u0 = s0; \
u1 = s1; \
u2 = s2; \
u3 = s3; \
u4 = s4; \
u5 = s5; \
u6 = s6; \
u7 = s7; \
} while (0)
#define UPDATE_STATE do { \
s0 = SPH_T32(s0 + u0); \
s1 = SPH_T32(s1 + u1); \
s2 = SPH_T32(s2 + u2); \
s3 = SPH_T32(s3 + u3); \
s4 = SPH_T32(s4 + u4); \
s5 = SPH_T32(s5 + u5); \
s6 = SPH_T32(s6 + u6); \
s7 = SPH_T32(s7 + u7); \
} while (0)
/*
* COREn(in) performs the core HAVAL computation for "n" passes, using
* the one-argument macro "in" to access the input words. Running state
* is held in variable "s0" to "s7".
*/
#define CORE3(in) do { \
SAVE_STATE; \
PASS1(3, in); \
PASS2(3, in); \
PASS3(3, in); \
UPDATE_STATE; \
} while (0)
#define CORE4(in) do { \
SAVE_STATE; \
PASS1(4, in); \
PASS2(4, in); \
PASS3(4, in); \
PASS4(4, in); \
UPDATE_STATE; \
} while (0)
#define CORE5(in) do { \
SAVE_STATE; \
PASS1(5, in); \
PASS2(5, in); \
PASS3(5, in); \
PASS4(5, in); \
PASS5(5, in); \
UPDATE_STATE; \
} while (0)
/*
* DSTATE declares the state variables "s0" to "s7".
*/
#define DSTATE sph_u32 s0, s1, s2, s3, s4, s5, s6, s7
/*
* RSTATE fills the state variables from the context "sc".
*/
#define RSTATE do { \
s0 = sc->s0; \
s1 = sc->s1; \
s2 = sc->s2; \
s3 = sc->s3; \
s4 = sc->s4; \
s5 = sc->s5; \
s6 = sc->s6; \
s7 = sc->s7; \
} while (0)
/*
* WSTATE updates the context "sc" from the state variables.
*/
#define WSTATE do { \
sc->s0 = s0; \
sc->s1 = s1; \
sc->s2 = s2; \
sc->s3 = s3; \
sc->s4 = s4; \
sc->s5 = s5; \
sc->s6 = s6; \
sc->s7 = s7; \
} while (0)
/*
* Initialize a context. "olen" is the output length, in 32-bit words
* (between 4 and 8, inclusive). "passes" is the number of passes
* (3, 4 or 5).
*/
static void
haval_init(sph_haval_context *sc, unsigned olen, unsigned passes)
{
sc->s0 = SPH_C32(0x243F6A88);
sc->s1 = SPH_C32(0x85A308D3);
sc->s2 = SPH_C32(0x13198A2E);
sc->s3 = SPH_C32(0x03707344);
sc->s4 = SPH_C32(0xA4093822);
sc->s5 = SPH_C32(0x299F31D0);
sc->s6 = SPH_C32(0x082EFA98);
sc->s7 = SPH_C32(0xEC4E6C89);
sc->olen = olen;
sc->passes = passes;
#if SPH_64
sc->count = 0;
#else
sc->count_high = 0;
sc->count_low = 0;
#endif
}
/*
* IN_PREPARE(data) contains declarations and code to prepare for
* reading input words pointed to by "data".
* INW(i) reads the word number "i" (from 0 to 31).
*/
#if SPH_LITTLE_FAST
#define IN_PREPARE(indata) const unsigned char *const load_ptr = \
(const unsigned char *)(indata)
#define INW(i) sph_dec32le_aligned(load_ptr + 4 * (i))
#else
#define IN_PREPARE(indata) \
sph_u32 X_var[32]; \
int load_index; \
\
for (load_index = 0; load_index < 32; load_index ++) \
X_var[load_index] = sph_dec32le_aligned( \
(const unsigned char *)(indata) + 4 * load_index)
#define INW(i) X_var[i]
#endif
/*
* Mixing operation used for 128-bit output tailoring. This function
* takes the byte 0 from a0, byte 1 from a1, byte 2 from a2 and byte 3
* from a3, and combines them into a 32-bit word, which is then rotated
* to the left by n bits.
*/
static SPH_INLINE sph_u32
mix128(sph_u32 a0, sph_u32 a1, sph_u32 a2, sph_u32 a3, int n)
{
sph_u32 tmp;
tmp = (a0 & SPH_C32(0x000000FF))
| (a1 & SPH_C32(0x0000FF00))
| (a2 & SPH_C32(0x00FF0000))
| (a3 & SPH_C32(0xFF000000));
if (n > 0)
tmp = SPH_ROTL32(tmp, n);
return tmp;
}
/*
* Mixing operation used to compute output word 0 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_0(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x01F80000))
| (x6 & SPH_C32(0xFE000000))
| (x7 & SPH_C32(0x0000003F));
return SPH_ROTL32(tmp, 13);
}
/*
* Mixing operation used to compute output word 1 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_1(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0xFE000000))
| (x6 & SPH_C32(0x0000003F))
| (x7 & SPH_C32(0x00000FC0));
return SPH_ROTL32(tmp, 7);
}
/*
* Mixing operation used to compute output word 2 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_2(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x0000003F))
| (x6 & SPH_C32(0x00000FC0))
| (x7 & SPH_C32(0x0007F000));
return tmp;
}
/*
* Mixing operation used to compute output word 3 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_3(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x00000FC0))
| (x6 & SPH_C32(0x0007F000))
| (x7 & SPH_C32(0x01F80000));
return tmp >> 6;
}
/*
* Mixing operation used to compute output word 4 for 160-bit output.
*/
static SPH_INLINE sph_u32
mix160_4(sph_u32 x5, sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x5 & SPH_C32(0x0007F000))
| (x6 & SPH_C32(0x01F80000))
| (x7 & SPH_C32(0xFE000000));
return tmp >> 12;
}
/*
* Mixing operation used to compute output word 0 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_0(sph_u32 x6, sph_u32 x7)
{
sph_u32 tmp;
tmp = (x6 & SPH_C32(0xFC000000)) | (x7 & SPH_C32(0x0000001F));
return SPH_ROTL32(tmp, 6);
}
/*
* Mixing operation used to compute output word 1 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_1(sph_u32 x6, sph_u32 x7)
{
return (x6 & SPH_C32(0x0000001F)) | (x7 & SPH_C32(0x000003E0));
}
/*
* Mixing operation used to compute output word 2 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_2(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x000003E0)) | (x7 & SPH_C32(0x0000FC00))) >> 5;
}
/*
* Mixing operation used to compute output word 3 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_3(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x0000FC00)) | (x7 & SPH_C32(0x001F0000))) >> 10;
}
/*
* Mixing operation used to compute output word 4 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_4(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x001F0000)) | (x7 & SPH_C32(0x03E00000))) >> 16;
}
/*
* Mixing operation used to compute output word 5 for 192-bit output.
*/
static SPH_INLINE sph_u32
mix192_5(sph_u32 x6, sph_u32 x7)
{
return ((x6 & SPH_C32(0x03E00000)) | (x7 & SPH_C32(0xFC000000))) >> 21;
}
/*
* Write out HAVAL output. The output length is tailored to the requested
* length.
*/
static void
haval_out(sph_haval_context *sc, void *dst)
{
DSTATE;
unsigned char *buf;
buf = dst;
RSTATE;
switch (sc->olen) {
case 4:
sph_enc32le(buf, SPH_T32(s0 + mix128(s7, s4, s5, s6, 24)));
sph_enc32le(buf + 4, SPH_T32(s1 + mix128(s6, s7, s4, s5, 16)));
sph_enc32le(buf + 8, SPH_T32(s2 + mix128(s5, s6, s7, s4, 8)));
sph_enc32le(buf + 12, SPH_T32(s3 + mix128(s4, s5, s6, s7, 0)));
break;
case 5:
sph_enc32le(buf, SPH_T32(s0 + mix160_0(s5, s6, s7)));
sph_enc32le(buf + 4, SPH_T32(s1 + mix160_1(s5, s6, s7)));
sph_enc32le(buf + 8, SPH_T32(s2 + mix160_2(s5, s6, s7)));
sph_enc32le(buf + 12, SPH_T32(s3 + mix160_3(s5, s6, s7)));
sph_enc32le(buf + 16, SPH_T32(s4 + mix160_4(s5, s6, s7)));
break;
case 6:
sph_enc32le(buf, SPH_T32(s0 + mix192_0(s6, s7)));
sph_enc32le(buf + 4, SPH_T32(s1 + mix192_1(s6, s7)));
sph_enc32le(buf + 8, SPH_T32(s2 + mix192_2(s6, s7)));
sph_enc32le(buf + 12, SPH_T32(s3 + mix192_3(s6, s7)));
sph_enc32le(buf + 16, SPH_T32(s4 + mix192_4(s6, s7)));
sph_enc32le(buf + 20, SPH_T32(s5 + mix192_5(s6, s7)));
break;
case 7:
sph_enc32le(buf, SPH_T32(s0 + ((s7 >> 27) & 0x1F)));
sph_enc32le(buf + 4, SPH_T32(s1 + ((s7 >> 22) & 0x1F)));
sph_enc32le(buf + 8, SPH_T32(s2 + ((s7 >> 18) & 0x0F)));
sph_enc32le(buf + 12, SPH_T32(s3 + ((s7 >> 13) & 0x1F)));
sph_enc32le(buf + 16, SPH_T32(s4 + ((s7 >> 9) & 0x0F)));
sph_enc32le(buf + 20, SPH_T32(s5 + ((s7 >> 4) & 0x1F)));
sph_enc32le(buf + 24, SPH_T32(s6 + ((s7 ) & 0x0F)));
break;
case 8:
sph_enc32le(buf, s0);
sph_enc32le(buf + 4, s1);
sph_enc32le(buf + 8, s2);
sph_enc32le(buf + 12, s3);
sph_enc32le(buf + 16, s4);
sph_enc32le(buf + 20, s5);
sph_enc32le(buf + 24, s6);
sph_enc32le(buf + 28, s7);
break;
}
}
/*
* The main core functions inline the code with the COREx() macros. We
* use a helper file, included three times, which avoids code copying.
*/
#undef PASSES
#define PASSES 3
#include "haval_helper.c"
#undef PASSES
#define PASSES 4
#include "haval_helper.c"
#undef PASSES
#define PASSES 5
#include "haval_helper.c"
/* ====================================================================== */
#define API(xxx, y) \
void \
sph_haval ## xxx ## _ ## y ## _init(void *cc) \
{ \
haval_init(cc, xxx >> 5, y); \
} \
\
void \
sph_haval ## xxx ## _ ## y (void *cc, const void *data, size_t len) \
{ \
haval ## y(cc, data, len); \
} \
\
void \
sph_haval ## xxx ## _ ## y ## _close(void *cc, void *dst) \
{ \
haval ## y ## _close(cc, 0, 0, dst); \
} \
\
void \
sph_haval ## xxx ## _ ## y ## addbits_and_close( \
void *cc, unsigned ub, unsigned n, void *dst) \
{ \
haval ## y ## _close(cc, ub, n, dst); \
}
API(128, 3)
API(128, 4)
API(128, 5)
API(160, 3)
API(160, 4)
API(160, 5)
API(192, 3)
API(192, 4)
API(192, 5)
API(224, 3)
API(224, 4)
API(224, 5)
API(256, 3)
API(256, 4)
API(256, 5)
#define RVAL do { \
s0 = val[0]; \
s1 = val[1]; \
s2 = val[2]; \
s3 = val[3]; \
s4 = val[4]; \
s5 = val[5]; \
s6 = val[6]; \
s7 = val[7]; \
} while (0)
#define WVAL do { \
val[0] = s0; \
val[1] = s1; \
val[2] = s2; \
val[3] = s3; \
val[4] = s4; \
val[5] = s5; \
val[6] = s6; \
val[7] = s7; \
} while (0)
#define INMSG(i) msg[i]
/* see sph_haval.h */
void
sph_haval_3_comp(const sph_u32 msg[32], sph_u32 val[8])
{
DSTATE;
RVAL;
CORE3(INMSG);
WVAL;
}
/* see sph_haval.h */
void
sph_haval_4_comp(const sph_u32 msg[32], sph_u32 val[8])
{
DSTATE;
RVAL;
CORE4(INMSG);
WVAL;
}
/* see sph_haval.h */
void
sph_haval_5_comp(const sph_u32 msg[32], sph_u32 val[8])
{
DSTATE;
RVAL;
CORE5(INMSG);
WVAL;
}
#ifdef __cplusplus
}
#endif