1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-22 12:34:17 +00:00
ccminer/lyra2/Sponge.c

756 lines
25 KiB
C
Raw Normal View History

/**
* A simple implementation of Blake2b's internal permutation
* in the form of a sponge.
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "Sponge.h"
#include "Lyra2.h"
/**
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
* typically have their internal state initialized with zeros, Blake2b's G function
* has a fixed point: if the internal state and message are both filled with zeros. the
* resulting permutation will always be a block filled with zeros; this happens because
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
* relying on the IV for avoiding possible fixed points.
*
* @param state The 1024-bit array to be initialized
*/
void initState(uint64_t state[/*16*/]) {
//First 512 bis are zeros
memset(state, 0, 64);
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
state[8] = blake2b_IV[0];
state[9] = blake2b_IV[1];
state[10] = blake2b_IV[2];
state[11] = blake2b_IV[3];
state[12] = blake2b_IV[4];
state[13] = blake2b_IV[5];
state[14] = blake2b_IV[6];
state[15] = blake2b_IV[7];
}
/**
* Execute Blake2b's G function, with all 12 rounds.
*
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
__inline static void blake2bLyra(uint64_t *v) {
ROUND_LYRA(0);
ROUND_LYRA(1);
ROUND_LYRA(2);
ROUND_LYRA(3);
ROUND_LYRA(4);
ROUND_LYRA(5);
ROUND_LYRA(6);
ROUND_LYRA(7);
ROUND_LYRA(8);
ROUND_LYRA(9);
ROUND_LYRA(10);
ROUND_LYRA(11);
}
/**
* Executes a reduced version of Blake2b's G function with only one round
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
__inline static void reducedBlake2bLyra(uint64_t *v) {
ROUND_LYRA(0);
}
/**
* Performs a squeeze operation, using Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param out Array that will receive the data squeezed
* @param len The number of bytes to be squeezed into the "out" array
*/
void squeeze(uint64_t *state, byte *out, unsigned int len) {
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *ptr = out;
int i;
//Squeezes full blocks
for (i = 0; i < fullBlocks; i++) {
memcpy(ptr, state, BLOCK_LEN_BYTES);
blake2bLyra(state);
ptr += BLOCK_LEN_BYTES;
}
//Squeezes remaining bytes
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
* of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
*/
void absorbBlock(uint64_t *state, const uint64_t *in) {
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
state[8] ^= in[8];
state[9] ^= in[9];
state[10] ^= in[10];
state[11] ^= in[11];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
* words of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
*/
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in) {
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
/*
for(int i = 0; i<16; i++) {
printf(" final state %d %08x %08x in %08x %08x\n", i, (uint32_t)(state[i] & 0xFFFFFFFFULL), (uint32_t)(state[i] >> 32),
(uint32_t)(in[i] & 0xFFFFFFFFULL), (uint32_t)(in[i] >> 32));
}
*/
}
/**
* Performs a reduced squeeze operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowOut Row to receive the data squeezed
*/
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut) {
uint64_t* ptrWord = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
int i;
//M[row][C-1-col] = H.reduced_squeeze()
for (i = 0; i < N_COLS; i++) {
ptrWord[0] = state[0];
ptrWord[1] = state[1];
ptrWord[2] = state[2];
ptrWord[3] = state[3];
ptrWord[4] = state[4];
ptrWord[5] = state[5];
ptrWord[6] = state[6];
ptrWord[7] = state[7];
ptrWord[8] = state[8];
ptrWord[9] = state[9];
ptrWord[10] = state[10];
ptrWord[11] = state[11];
/*
for (int i = 0; i<12; i++) {
printf(" after reducedSqueezeRow0 %d %08x %08x in %08x %08x\n", i, (uint32_t)(ptrWord[i] & 0xFFFFFFFFULL), (uint32_t)(ptrWord[i] >> 32),
(uint32_t)(state[i] & 0xFFFFFFFFULL), (uint32_t)(state[i] >> 32));
}
*/
//Goes to next block (column) that will receive the squeezed data
ptrWord -= BLOCK_LEN_INT64;
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
}
}
/**
* Performs a reduced duplex operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowIn Row to feed the sponge
* @param rowOut Row to receive the sponge's output
*/
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev][col]"
state[0] ^= (ptrWordIn[0]);
state[1] ^= (ptrWordIn[1]);
state[2] ^= (ptrWordIn[2]);
state[3] ^= (ptrWordIn[3]);
state[4] ^= (ptrWordIn[4]);
state[5] ^= (ptrWordIn[5]);
state[6] ^= (ptrWordIn[6]);
state[7] ^= (ptrWordIn[7]);
state[8] ^= (ptrWordIn[8]);
state[9] ^= (ptrWordIn[9]);
state[10] ^= (ptrWordIn[10]);
state[11] ^= (ptrWordIn[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][C-1-col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//Input: next column (i.e., next block in sequence)
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left and N_COLS is a system parameter.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Performs a duplex operation over "M[rowInOut] [+] M[rowIn]", writing the output "rand"
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowSetupOLD(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] ^ ptrWordIn[0];
state[1] ^= ptrWordInOut[1] ^ ptrWordIn[1];
state[2] ^= ptrWordInOut[2] ^ ptrWordIn[2];
state[3] ^= ptrWordInOut[3] ^ ptrWordIn[3];
state[4] ^= ptrWordInOut[4] ^ ptrWordIn[4];
state[5] ^= ptrWordInOut[5] ^ ptrWordIn[5];
state[6] ^= ptrWordInOut[6] ^ ptrWordIn[6];
state[7] ^= ptrWordInOut[7] ^ ptrWordIn[7];
state[8] ^= ptrWordInOut[8] ^ ptrWordIn[8];
state[9] ^= ptrWordInOut[9] ^ ptrWordIn[9];
state[10] ^= ptrWordInOut[10] ^ ptrWordIn[10];
state[11] ^= ptrWordInOut[11] ^ ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = rand
ptrWordOut[0] = state[0];
ptrWordOut[1] = state[1];
ptrWordOut[2] = state[2];
ptrWordOut[3] = state[3];
ptrWordOut[4] = state[4];
ptrWordOut[5] = state[5];
ptrWordOut[6] = state[6];
ptrWordOut[7] = state[7];
ptrWordOut[8] = state[8];
ptrWordOut[9] = state[9];
ptrWordOut[10] = state[10];
ptrWordOut[11] = state[11];
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += BLOCK_LEN_INT64;
}
}
*/
/**
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", writing the output "rand"
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowSetupv5(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//M[row][col] = rand
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += BLOCK_LEN_INT64;
}
}
*/
/**
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", writing the output "rand"
* on M[rowOut] and making "M[rowInOut] = M[rowInOut] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowSetupv5c(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut;
int i;
for (i = 0; i < N_COLS / 2; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//M[row][col] = rand
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += 2 * BLOCK_LEN_INT64;
}
ptrWordOut = rowOut + BLOCK_LEN_INT64;
for (i = 0; i < N_COLS / 2; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[10];
ptrWordInOut[1] ^= state[11];
ptrWordInOut[2] ^= state[0];
ptrWordInOut[3] ^= state[1];
ptrWordInOut[4] ^= state[2];
ptrWordInOut[5] ^= state[3];
ptrWordInOut[6] ^= state[4];
ptrWordInOut[7] ^= state[5];
ptrWordInOut[8] ^= state[6];
ptrWordInOut[9] ^= state[7];
ptrWordInOut[10] ^= state[8];
ptrWordInOut[11] ^= state[9];
//M[row][col] = rand
ptrWordOut[0] = state[0] ^ ptrWordIn[0];
ptrWordOut[1] = state[1] ^ ptrWordIn[1];
ptrWordOut[2] = state[2] ^ ptrWordIn[2];
ptrWordOut[3] = state[3] ^ ptrWordIn[3];
ptrWordOut[4] = state[4] ^ ptrWordIn[4];
ptrWordOut[5] = state[5] ^ ptrWordIn[5];
ptrWordOut[6] = state[6] ^ ptrWordIn[6];
ptrWordOut[7] = state[7] ^ ptrWordIn[7];
ptrWordOut[8] = state[8] ^ ptrWordIn[8];
ptrWordOut[9] = state[9] ^ ptrWordIn[9];
ptrWordOut[10] = state[10] ^ ptrWordIn[10];
ptrWordOut[11] = state[11] ^ ptrWordIn[11];
//Goes to next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut += 2 * BLOCK_LEN_INT64;
}
}
*/
/**
* Performs a duplex operation over "M[rowInOut] XOR M[rowIn]", using the output "rand"
* to make "M[rowOut][col] = M[rowOut][col] XOR rand" and "M[rowInOut] = M[rowInOut] XOR rotW(rand)",
* where rotW is a 64-bit rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
/*
inline void reducedDuplexRowd(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[rowInOut] XOR M[rowIn]"
state[0] ^= ptrWordInOut[0] + ptrWordIn[0];
state[1] ^= ptrWordInOut[1] + ptrWordIn[1];
state[2] ^= ptrWordInOut[2] + ptrWordIn[2];
state[3] ^= ptrWordInOut[3] + ptrWordIn[3];
state[4] ^= ptrWordInOut[4] + ptrWordIn[4];
state[5] ^= ptrWordInOut[5] + ptrWordIn[5];
state[6] ^= ptrWordInOut[6] + ptrWordIn[6];
state[7] ^= ptrWordInOut[7] + ptrWordIn[7];
state[8] ^= ptrWordInOut[8] + ptrWordIn[8];
state[9] ^= ptrWordInOut[9] + ptrWordIn[9];
state[10] ^= ptrWordInOut[10] + ptrWordIn[10];
state[11] ^= ptrWordInOut[11] + ptrWordIn[11];
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
}
*/
/**
Prints an array of unsigned chars
*/
void printArray(unsigned char *array, unsigned int size, char *name) {
unsigned int i;
printf("%s: ", name);
for (i = 0; i < size; i++) {
printf("%2x|", array[i]);
}
printf("\n");
}
////////////////////////////////////////////////////////////////////////////////////////////////