|
|
|
|
#include <string.h>
|
|
|
|
|
#include <openssl/sha.h>
|
|
|
|
|
#include <cuda.h>
|
|
|
|
|
#include "cuda_runtime.h"
|
|
|
|
|
#include "device_launch_parameters.h"
|
|
|
|
|
#include <map>
|
|
|
|
|
|
|
|
|
|
#ifndef _WIN32
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// include thrust
|
|
|
|
|
#include <thrust/version.h>
|
|
|
|
|
#include <thrust/remove.h>
|
|
|
|
|
#include <thrust/device_vector.h>
|
|
|
|
|
#include <thrust/iterator/constant_iterator.h>
|
|
|
|
|
|
|
|
|
|
#include "miner.h"
|
|
|
|
|
|
|
|
|
|
#include "hefty1.h"
|
|
|
|
|
#include "sph/sph_keccak.h"
|
|
|
|
|
#include "sph/sph_blake.h"
|
|
|
|
|
#include "sph/sph_groestl.h"
|
|
|
|
|
|
|
|
|
|
#include "heavy/cuda_hefty1.h"
|
|
|
|
|
#include "heavy/cuda_sha256.h"
|
|
|
|
|
#include "heavy/cuda_keccak512.h"
|
|
|
|
|
#include "heavy/cuda_groestl512.h"
|
|
|
|
|
#include "heavy/cuda_blake512.h"
|
|
|
|
|
#include "heavy/cuda_combine.h"
|
|
|
|
|
|
|
|
|
|
extern uint32_t *d_hash2output[8];
|
|
|
|
|
extern uint32_t *d_hash3output[8];
|
|
|
|
|
extern uint32_t *d_hash4output[8];
|
|
|
|
|
extern uint32_t *d_hash5output[8];
|
|
|
|
|
|
|
|
|
|
#define HEAVYCOIN_BLKHDR_SZ 84
|
|
|
|
|
#define MNR_BLKHDR_SZ 80
|
|
|
|
|
|
|
|
|
|
// nonce-array f<EFBFBD>r die threads
|
|
|
|
|
uint32_t *d_nonceVector[8];
|
|
|
|
|
|
|
|
|
|
/* Combines top 64-bits from each hash into a single hash */
|
|
|
|
|
static void combine_hashes(uint32_t *out, const uint32_t *hash1, const uint32_t *hash2, const uint32_t *hash3, const uint32_t *hash4)
|
|
|
|
|
{
|
|
|
|
|
const uint32_t *hash[4] = { hash1, hash2, hash3, hash4 };
|
|
|
|
|
int bits;
|
|
|
|
|
unsigned int i;
|
|
|
|
|
uint32_t mask;
|
|
|
|
|
unsigned int k;
|
|
|
|
|
|
|
|
|
|
/* Transpose first 64 bits of each hash into out */
|
|
|
|
|
memset(out, 0, 32);
|
|
|
|
|
bits = 0;
|
|
|
|
|
for (i = 7; i >= 6; i--) {
|
|
|
|
|
for (mask = 0x80000000; mask; mask >>= 1) {
|
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
|
|
|
out[(255 - bits)/32] <<= 1;
|
|
|
|
|
if ((hash[k][i] & mask) != 0)
|
|
|
|
|
out[(255 - bits)/32] |= 1;
|
|
|
|
|
bits++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
|
#include <intrin.h>
|
|
|
|
|
static uint32_t __inline bitsset( uint32_t x )
|
|
|
|
|
{
|
|
|
|
|
DWORD r = 0;
|
|
|
|
|
_BitScanReverse(&r, x);
|
|
|
|
|
return r;
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
static uint32_t bitsset( uint32_t x )
|
|
|
|
|
{
|
|
|
|
|
return 31-__builtin_clz(x);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Finde das high bit in einem Multiword-Integer.
|
|
|
|
|
static int findhighbit(const uint32_t *ptarget, int words)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
int highbit = 0;
|
|
|
|
|
for (i=words-1; i >= 0; --i)
|
|
|
|
|
{
|
|
|
|
|
if (ptarget[i] != 0) {
|
|
|
|
|
highbit = i*32 + bitsset(ptarget[i])+1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return highbit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Generiere ein Multiword-Integer das die Zahl
|
|
|
|
|
// (2 << highbit) - 1 repr<EFBFBD>sentiert.
|
|
|
|
|
static void genmask(uint32_t *ptarget, int words, int highbit)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i=words-1; i >= 0; --i)
|
|
|
|
|
{
|
|
|
|
|
if ((i+1)*32 <= highbit)
|
|
|
|
|
ptarget[i] = 0xffffffff;
|
|
|
|
|
else if (i*32 > highbit)
|
|
|
|
|
ptarget[i] = 0x00000000;
|
|
|
|
|
else
|
|
|
|
|
ptarget[i] = (1 << (highbit-i*32)) - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct check_nonce_for_remove
|
|
|
|
|
{
|
|
|
|
|
check_nonce_for_remove(uint64_t target, uint32_t *hashes, uint32_t hashlen, uint32_t startNonce) :
|
|
|
|
|
m_target(target),
|
|
|
|
|
m_hashes(hashes),
|
|
|
|
|
m_hashlen(hashlen),
|
|
|
|
|
m_startNonce(startNonce) { }
|
|
|
|
|
|
|
|
|
|
__device__
|
|
|
|
|
bool operator()(const uint32_t x)
|
|
|
|
|
{
|
|
|
|
|
// Position im Hash Buffer
|
|
|
|
|
uint32_t hashIndex = x - m_startNonce;
|
|
|
|
|
// Wert des Hashes (als uint64_t) auslesen.
|
|
|
|
|
// Steht im 6. und 7. Wort des Hashes (jeder dieser Hashes hat 512 Bits)
|
|
|
|
|
uint64_t hashValue = *((uint64_t*)(&m_hashes[m_hashlen*hashIndex + 6]));
|
|
|
|
|
// gegen das Target pr<EFBFBD>fen. Es d<EFBFBD>rfen nur Bits aus dem Target gesetzt sein.
|
|
|
|
|
return (hashValue & m_target) != hashValue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint64_t m_target;
|
|
|
|
|
uint32_t *m_hashes;
|
|
|
|
|
uint32_t m_hashlen;
|
|
|
|
|
uint32_t m_startNonce;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Zahl der CUDA Devices im System bestimmen
|
|
|
|
|
extern "C" int cuda_num_devices()
|
|
|
|
|
{
|
|
|
|
|
int version;
|
|
|
|
|
cudaError_t err = cudaDriverGetVersion(&version);
|
|
|
|
|
if (err != cudaSuccess)
|
|
|
|
|
{
|
|
|
|
|
applog(LOG_ERR, "Unable to query CUDA driver version! Is an nVidia driver installed?");
|
|
|
|
|
exit(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int maj = version / 1000, min = version % 100; // same as in deviceQuery sample
|
|
|
|
|
if (maj < 5 || (maj == 5 && min < 5))
|
|
|
|
|
{
|
|
|
|
|
applog(LOG_ERR, "Driver does not support CUDA %d.%d API! Update your nVidia driver!", 5, 5);
|
|
|
|
|
exit(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int GPU_N;
|
|
|
|
|
err = cudaGetDeviceCount(&GPU_N);
|
|
|
|
|
if (err != cudaSuccess)
|
|
|
|
|
{
|
|
|
|
|
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?");
|
|
|
|
|
exit(1);
|
|
|
|
|
}
|
|
|
|
|
return GPU_N;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Ger<EFBFBD>tenamen holen
|
|
|
|
|
extern char *device_name[8];
|
|
|
|
|
extern int device_map[8];
|
|
|
|
|
|
|
|
|
|
extern "C" void cuda_devicenames()
|
|
|
|
|
{
|
|
|
|
|
cudaError_t err;
|
|
|
|
|
int GPU_N;
|
|
|
|
|
err = cudaGetDeviceCount(&GPU_N);
|
|
|
|
|
if (err != cudaSuccess)
|
|
|
|
|
{
|
|
|
|
|
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?");
|
|
|
|
|
exit(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int i=0; i < GPU_N; i++)
|
|
|
|
|
{
|
|
|
|
|
cudaDeviceProp props;
|
|
|
|
|
cudaGetDeviceProperties(&props, device_map[i]);
|
|
|
|
|
|
|
|
|
|
device_name[i] = strdup(props.name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static bool substringsearch(const char *haystack, const char *needle, int &match)
|
|
|
|
|
{
|
|
|
|
|
int hlen = strlen(haystack);
|
|
|
|
|
int nlen = strlen(needle);
|
|
|
|
|
for (int i=0; i < hlen; ++i)
|
|
|
|
|
{
|
|
|
|
|
if (haystack[i] == ' ') continue;
|
|
|
|
|
int j=0, x = 0;
|
|
|
|
|
while(j < nlen)
|
|
|
|
|
{
|
|
|
|
|
if (haystack[i+x] == ' ') {++x; continue;}
|
|
|
|
|
if (needle[j] == ' ') {++j; continue;}
|
|
|
|
|
if (needle[j] == '#') return ++match == needle[j+1]-'0';
|
|
|
|
|
if (tolower(haystack[i+x]) != tolower(needle[j])) break;
|
|
|
|
|
++j; ++x;
|
|
|
|
|
}
|
|
|
|
|
if (j == nlen) return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// CUDA Ger<EFBFBD>t nach Namen finden (gibt Ger<EFBFBD>te-Index zur<EFBFBD>ck oder -1)
|
|
|
|
|
extern "C" int cuda_finddevice(char *name)
|
|
|
|
|
{
|
|
|
|
|
int num = cuda_num_devices();
|
|
|
|
|
int match = 0;
|
|
|
|
|
for (int i=0; i < num; ++i)
|
|
|
|
|
{
|
|
|
|
|
cudaDeviceProp props;
|
|
|
|
|
if (cudaGetDeviceProperties(&props, i) == cudaSuccess)
|
|
|
|
|
if (substringsearch(props.name, name, match)) return i;
|
|
|
|
|
}
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Zeitsynchronisations-Routine von cudaminer mit CPU sleep
|
|
|
|
|
typedef struct { double value[8]; } tsumarray;
|
|
|
|
|
cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id)
|
|
|
|
|
{
|
|
|
|
|
cudaError_t result = cudaSuccess;
|
|
|
|
|
if (situation >= 0)
|
|
|
|
|
{
|
|
|
|
|
static std::map<int, tsumarray> tsum;
|
|
|
|
|
|
|
|
|
|
double a = 0.95, b = 0.05;
|
|
|
|
|
if (tsum.find(situation) == tsum.end()) { a = 0.5; b = 0.5; } // faster initial convergence
|
|
|
|
|
|
|
|
|
|
double tsync = 0.0;
|
|
|
|
|
double tsleep = 0.95 * tsum[situation].value[thr_id];
|
|
|
|
|
if (cudaStreamQuery(stream) == cudaErrorNotReady)
|
|
|
|
|
{
|
|
|
|
|
usleep((useconds_t)(1e6*tsleep));
|
|
|
|
|
struct timeval tv_start, tv_end;
|
|
|
|
|
gettimeofday(&tv_start, NULL);
|
|
|
|
|
result = cudaStreamSynchronize(stream);
|
|
|
|
|
gettimeofday(&tv_end, NULL);
|
|
|
|
|
tsync = 1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec);
|
|
|
|
|
}
|
|
|
|
|
if (tsync >= 0) tsum[situation].value[thr_id] = a * tsum[situation].value[thr_id] + b * (tsleep+tsync);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
result = cudaStreamSynchronize(stream);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
|
|
|
|
|
const uint32_t *ptarget, uint32_t max_nonce,
|
|
|
|
|
unsigned long *hashes_done, uint32_t maxvote, int blocklen);
|
|
|
|
|
|
|
|
|
|
extern "C"
|
|
|
|
|
int scanhash_heavy(int thr_id, uint32_t *pdata,
|
|
|
|
|
const uint32_t *ptarget, uint32_t max_nonce,
|
|
|
|
|
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
|
|
|
|
|
{
|
|
|
|
|
return scanhash_heavy_cpp(thr_id, pdata,
|
|
|
|
|
ptarget, max_nonce, hashes_done, maxvote, blocklen);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern bool opt_benchmark;
|
|
|
|
|
|
|
|
|
|
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
|
|
|
|
|
const uint32_t *ptarget, uint32_t max_nonce,
|
|
|
|
|
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
|
|
|
|
|
{
|
|
|
|
|
// CUDA will process thousands of threads.
|
|
|
|
|
const int throughput = 4096 * 128;
|
|
|
|
|
|
|
|
|
|
if (opt_benchmark)
|
|
|
|
|
((uint32_t*)ptarget)[7] = 0x000000ff;
|
|
|
|
|
|
|
|
|
|
int rc = 0;
|
|
|
|
|
uint32_t *hash = NULL;
|
|
|
|
|
cudaMallocHost(&hash, throughput*8*sizeof(uint32_t));
|
|
|
|
|
uint32_t *cpu_nonceVector = NULL;
|
|
|
|
|
cudaMallocHost(&cpu_nonceVector, throughput*sizeof(uint32_t));
|
|
|
|
|
|
|
|
|
|
int nrmCalls[6];
|
|
|
|
|
memset(nrmCalls, 0, sizeof(int) * 6);
|
|
|
|
|
|
|
|
|
|
uint32_t start_nonce = pdata[19];
|
|
|
|
|
|
|
|
|
|
// f<EFBFBD>r jeden Hash ein individuelles Target erstellen basierend
|
|
|
|
|
// auf dem h<EFBFBD>chsten Bit, das in ptarget gesetzt ist.
|
|
|
|
|
int highbit = findhighbit(ptarget, 8);
|
|
|
|
|
uint32_t target2[2], target3[2], target4[2], target5[2];
|
|
|
|
|
genmask(target2, 2, highbit/4+(((highbit%4)>3)?1:0) ); // SHA256
|
|
|
|
|
genmask(target3, 2, highbit/4+(((highbit%4)>2)?1:0) ); // keccak512
|
|
|
|
|
genmask(target4, 2, highbit/4+(((highbit%4)>1)?1:0) ); // groestl512
|
|
|
|
|
genmask(target5, 2, highbit/4+(((highbit%4)>0)?1:0) ); // blake512
|
|
|
|
|
|
|
|
|
|
static bool init[8] = {0,0,0,0,0,0,0,0};
|
|
|
|
|
if (!init[thr_id])
|
|
|
|
|
{
|
|
|
|
|
hefty_cpu_init(thr_id, throughput);
|
|
|
|
|
sha256_cpu_init(thr_id, throughput);
|
|
|
|
|
keccak512_cpu_init(thr_id, throughput);
|
|
|
|
|
groestl512_cpu_init(thr_id, throughput);
|
|
|
|
|
blake512_cpu_init(thr_id, throughput);
|
|
|
|
|
combine_cpu_init(thr_id, throughput);
|
|
|
|
|
init[thr_id] = true;
|
|
|
|
|
cudaMalloc(&d_nonceVector[thr_id], sizeof(uint32_t) * throughput);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (blocklen == HEAVYCOIN_BLKHDR_SZ)
|
|
|
|
|
{
|
|
|
|
|
uint16_t *ext = (uint16_t *)&pdata[20];
|
|
|
|
|
|
|
|
|
|
if (opt_vote > maxvote) {
|
|
|
|
|
printf("Warning: Your block reward vote (%hu) exceeds "
|
|
|
|
|
"the maxvote reported by the pool (%hu).\n",
|
|
|
|
|
opt_vote, maxvote);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (opt_trust_pool && opt_vote > maxvote) {
|
|
|
|
|
printf("Warning: Capping block reward vote to maxvote reported by pool.\n");
|
|
|
|
|
ext[0] = maxvote;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
ext[0] = opt_vote;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Setze die Blockdaten
|
|
|
|
|
hefty_cpu_setBlock(thr_id, throughput, pdata, blocklen);
|
|
|
|
|
sha256_cpu_setBlock(pdata, blocklen);
|
|
|
|
|
keccak512_cpu_setBlock(pdata, blocklen);
|
|
|
|
|
groestl512_cpu_setBlock(pdata, blocklen);
|
|
|
|
|
blake512_cpu_setBlock(pdata, blocklen);
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
////// Compaction init
|
|
|
|
|
thrust::device_ptr<uint32_t> devNoncePtr(d_nonceVector[thr_id]);
|
|
|
|
|
thrust::device_ptr<uint32_t> devNoncePtrEnd((d_nonceVector[thr_id]) + throughput);
|
|
|
|
|
uint32_t actualNumberOfValuesInNonceVectorGPU = throughput;
|
|
|
|
|
|
|
|
|
|
hefty_cpu_hash(thr_id, throughput, pdata[19]);
|
|
|
|
|
//cudaThreadSynchronize();
|
|
|
|
|
sha256_cpu_hash(thr_id, throughput, pdata[19]);
|
|
|
|
|
//cudaThreadSynchronize();
|
|
|
|
|
|
|
|
|
|
// Hier ist die l<EFBFBD>ngste CPU Wartephase. Deshalb ein strategisches MyStreamSynchronize() hier.
|
|
|
|
|
MyStreamSynchronize(NULL, 1, thr_id);
|
|
|
|
|
|
|
|
|
|
////// Compaction
|
|
|
|
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target2), d_hash2output[thr_id], 8, pdata[19]));
|
|
|
|
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
|
|
|
|
|
if(actualNumberOfValuesInNonceVectorGPU == 0)
|
|
|
|
|
goto emptyNonceVector;
|
|
|
|
|
|
|
|
|
|
keccak512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
|
|
|
|
|
//cudaThreadSynchronize();
|
|
|
|
|
|
|
|
|
|
////// Compaction
|
|
|
|
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target3), d_hash3output[thr_id], 16, pdata[19]));
|
|
|
|
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
|
|
|
|
|
if(actualNumberOfValuesInNonceVectorGPU == 0)
|
|
|
|
|
goto emptyNonceVector;
|
|
|
|
|
|
|
|
|
|
blake512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
|
|
|
|
|
//cudaThreadSynchronize();
|
|
|
|
|
|
|
|
|
|
////// Compaction
|
|
|
|
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target5), d_hash5output[thr_id], 16, pdata[19]));
|
|
|
|
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
|
|
|
|
|
if(actualNumberOfValuesInNonceVectorGPU == 0)
|
|
|
|
|
goto emptyNonceVector;
|
|
|
|
|
|
|
|
|
|
groestl512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
|
|
|
|
|
//cudaThreadSynchronize();
|
|
|
|
|
|
|
|
|
|
////// Compaction
|
|
|
|
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target4), d_hash4output[thr_id], 16, pdata[19]));
|
|
|
|
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
|
|
|
|
|
if(actualNumberOfValuesInNonceVectorGPU == 0)
|
|
|
|
|
goto emptyNonceVector;
|
|
|
|
|
|
|
|
|
|
// combine
|
|
|
|
|
combine_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19], hash);
|
|
|
|
|
|
|
|
|
|
// Ergebnisse kopieren
|
|
|
|
|
if(actualNumberOfValuesInNonceVectorGPU > 0)
|
|
|
|
|
{
|
|
|
|
|
cudaMemcpy(cpu_nonceVector, d_nonceVector[thr_id], sizeof(uint32_t) * actualNumberOfValuesInNonceVectorGPU, cudaMemcpyDeviceToHost);
|
|
|
|
|
|
|
|
|
|
for (i=0; i<actualNumberOfValuesInNonceVectorGPU;++i)
|
|
|
|
|
{
|
|
|
|
|
uint32_t nonce = cpu_nonceVector[i];
|
|
|
|
|
//uint32_t index = nonce - pdata[19];
|
|
|
|
|
uint32_t index = i;
|
|
|
|
|
uint32_t *foundhash = &hash[8*index];
|
|
|
|
|
if (foundhash[7] <= ptarget[7]) {
|
|
|
|
|
if (fulltest(foundhash, ptarget)) {
|
|
|
|
|
uint32_t verification[8];
|
|
|
|
|
pdata[19] += nonce - pdata[19];
|
|
|
|
|
heavycoin_hash((unsigned char *)verification, (const unsigned char *)pdata, blocklen);
|
|
|
|
|
if (memcmp(verification, foundhash, 8*sizeof(uint32_t))) {
|
|
|
|
|
applog(LOG_ERR, "hash for nonce=$%08X does not validate on CPU!\n", nonce);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
*hashes_done = pdata[19] - start_nonce;
|
|
|
|
|
rc = 1;
|
|
|
|
|
goto exit;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
emptyNonceVector:
|
|
|
|
|
|
|
|
|
|
pdata[19] += throughput;
|
|
|
|
|
|
|
|
|
|
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
|
|
|
|
|
*hashes_done = pdata[19] - start_nonce;
|
|
|
|
|
|
|
|
|
|
exit:
|
|
|
|
|
cudaFreeHost(cpu_nonceVector);
|
|
|
|
|
cudaFreeHost(hash);
|
|
|
|
|
return rc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void heavycoin_hash(unsigned char* output, const unsigned char* input, int len)
|
|
|
|
|
{
|
|
|
|
|
unsigned char hash1[32];
|
|
|
|
|
unsigned char hash2[32];
|
|
|
|
|
uint32_t hash3[16];
|
|
|
|
|
uint32_t hash4[16];
|
|
|
|
|
uint32_t hash5[16];
|
|
|
|
|
uint32_t *final;
|
|
|
|
|
SHA256_CTX ctx;
|
|
|
|
|
sph_keccak512_context keccakCtx;
|
|
|
|
|
sph_groestl512_context groestlCtx;
|
|
|
|
|
sph_blake512_context blakeCtx;
|
|
|
|
|
|
|
|
|
|
HEFTY1(input, len, hash1);
|
|
|
|
|
|
|
|
|
|
/* HEFTY1 is new, so take an extra security measure to eliminate
|
|
|
|
|
* the possiblity of collisions:
|
|
|
|
|
*
|
|
|
|
|
* Hash(x) = SHA256(x + HEFTY1(x))
|
|
|
|
|
*
|
|
|
|
|
* N.B. '+' is concatenation.
|
|
|
|
|
*/
|
|
|
|
|
SHA256_Init(&ctx);
|
|
|
|
|
SHA256_Update(&ctx, input, len);
|
|
|
|
|
SHA256_Update(&ctx, hash1, sizeof(hash1));
|
|
|
|
|
SHA256_Final(hash2, &ctx);
|
|
|
|
|
|
|
|
|
|
/* Additional security: Do not rely on a single cryptographic hash
|
|
|
|
|
* function. Instead, combine the outputs of 4 of the most secure
|
|
|
|
|
* cryptographic hash functions-- SHA256, KECCAK512, GROESTL512
|
|
|
|
|
* and BLAKE512.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
sph_keccak512_init(&keccakCtx);
|
|
|
|
|
sph_keccak512(&keccakCtx, input, len);
|
|
|
|
|
sph_keccak512(&keccakCtx, hash1, sizeof(hash1));
|
|
|
|
|
sph_keccak512_close(&keccakCtx, (void *)&hash3);
|
|
|
|
|
|
|
|
|
|
sph_groestl512_init(&groestlCtx);
|
|
|
|
|
sph_groestl512(&groestlCtx, input, len);
|
|
|
|
|
sph_groestl512(&groestlCtx, hash1, sizeof(hash1));
|
|
|
|
|
sph_groestl512_close(&groestlCtx, (void *)&hash4);
|
|
|
|
|
|
|
|
|
|
sph_blake512_init(&blakeCtx);
|
|
|
|
|
sph_blake512(&blakeCtx, input, len);
|
|
|
|
|
sph_blake512(&blakeCtx, (unsigned char *)&hash1, sizeof(hash1));
|
|
|
|
|
sph_blake512_close(&blakeCtx, (void *)&hash5);
|
|
|
|
|
|
|
|
|
|
final = (uint32_t *)output;
|
|
|
|
|
combine_hashes(final, (uint32_t *)hash2, hash3, hash4, hash5);
|
|
|
|
|
}
|