|
|
|
#include <string.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
|
|
|
|
#include "sph/sph_fugue.h"
|
|
|
|
|
|
|
|
#include "miner.h"
|
|
|
|
|
|
|
|
#include "cuda_fugue256.h"
|
|
|
|
|
|
|
|
extern "C" void my_fugue256_init(void *cc);
|
|
|
|
extern "C" void my_fugue256(void *cc, const void *data, size_t len);
|
|
|
|
extern "C" void my_fugue256_close(void *cc, void *dst);
|
|
|
|
extern "C" void my_fugue256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
|
|
|
|
|
|
|
|
// vorbereitete Kontexte nach den ersten 80 Bytes
|
|
|
|
// sph_fugue256_context ctx_fugue_const[MAX_GPUS];
|
|
|
|
|
|
|
|
#define SWAP32(x) \
|
|
|
|
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \
|
|
|
|
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
|
|
|
|
|
|
|
|
void fugue256_hash(unsigned char* output, const unsigned char* input, int len)
|
|
|
|
{
|
|
|
|
sph_fugue256_context ctx;
|
|
|
|
|
|
|
|
sph_fugue256_init(&ctx);
|
|
|
|
sph_fugue256(&ctx, input, len);
|
|
|
|
sph_fugue256_close(&ctx, (void *)output);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool init[MAX_GPUS] = { 0 };
|
|
|
|
|
|
|
|
int scanhash_fugue256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
|
|
|
|
{
|
|
|
|
uint32_t _ALIGN(64) endiandata[20];
|
|
|
|
uint32_t *pdata = work->data;
|
|
|
|
uint32_t *ptarget = work->target;
|
|
|
|
uint32_t start_nonce = pdata[19]++;
|
|
|
|
int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 19;
|
|
|
|
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 256*256*8
|
|
|
|
if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce);
|
|
|
|
|
|
|
|
if (opt_benchmark)
|
|
|
|
((uint32_t*)ptarget)[7] = 0xf;
|
|
|
|
|
|
|
|
// init
|
|
|
|
if(!init[thr_id])
|
|
|
|
{
|
|
|
|
cudaSetDevice(device_map[thr_id]);
|
|
|
|
|
|
|
|
fugue256_cpu_init(thr_id, throughput);
|
|
|
|
init[thr_id] = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Endian
|
|
|
|
for (int kk=0; kk < 20; kk++)
|
|
|
|
be32enc(&endiandata[kk], pdata[kk]);
|
|
|
|
|
|
|
|
// Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt)
|
|
|
|
fugue256_cpu_setBlock(thr_id, endiandata, (void*)ptarget);
|
|
|
|
|
|
|
|
do {
|
|
|
|
// GPU
|
|
|
|
uint32_t foundNounce = UINT32_MAX;
|
|
|
|
fugue256_cpu_hash(thr_id, throughput, pdata[19], NULL, &foundNounce);
|
|
|
|
|
|
|
|
if (foundNounce < UINT32_MAX)
|
|
|
|
{
|
|
|
|
uint32_t vhash[8];
|
|
|
|
sph_fugue256_context ctx_fugue;
|
|
|
|
endiandata[19] = SWAP32(foundNounce);
|
|
|
|
|
|
|
|
sph_fugue256_init(&ctx_fugue);
|
|
|
|
sph_fugue256 (&ctx_fugue, endiandata, 80);
|
|
|
|
sph_fugue256_close(&ctx_fugue, &vhash);
|
|
|
|
|
|
|
|
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget))
|
|
|
|
{
|
|
|
|
work_set_target_ratio(work, vhash);
|
|
|
|
pdata[19] = foundNounce;
|
|
|
|
*hashes_done = foundNounce - start_nonce + 1;
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!",
|
|
|
|
device_map[thr_id], foundNounce);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) {
|
|
|
|
pdata[19] = max_nonce;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
pdata[19] += throughput;
|
|
|
|
|
|
|
|
} while (!work_restart[thr_id].restart);
|
|
|
|
|
|
|
|
*hashes_done = pdata[19] - start_nonce + 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// cleanup
|
|
|
|
void free_fugue256(int thr_id)
|
|
|
|
{
|
|
|
|
if (!init[thr_id])
|
|
|
|
return;
|
|
|
|
|
|
|
|
cudaSetDevice(device_map[thr_id]);
|
|
|
|
|
|
|
|
fugue256_cpu_free(thr_id);
|
|
|
|
|
|
|
|
init[thr_id] = false;
|
|
|
|
|
|
|
|
cudaDeviceSynchronize();
|
|
|
|
}
|