1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-15 01:00:19 +00:00
ccminer/x11/bitcore.cu

440 lines
11 KiB
Plaintext
Raw Normal View History

/**
* Timetravel-10 (bitcore) CUDA implementation
* by tpruvot@github - May 2017
*/
#include <stdio.h>
#include <memory.h>
#include <unistd.h>
#define HASH_FUNC_BASE_TIMESTAMP 1492973331U
#define HASH_FUNC_COUNT 10
#define HASH_FUNC_COUNT_PERMUTATIONS 40320U
extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_bmw.h"
#include "sph/sph_groestl.h"
#include "sph/sph_skein.h"
#include "sph/sph_jh.h"
#include "sph/sph_keccak.h"
#include "sph/sph_luffa.h"
#include "sph/sph_cubehash.h"
#include "sph/sph_shavite.h"
#include "sph/sph_simd.h"
#if HASH_FUNC_COUNT > 10
#include "sph/sph_echo.h"
#endif
}
#include "miner.h"
#include "cuda_helper.h"
#include "cuda_x11.h"
static uint32_t *d_hash[MAX_GPUS];
enum Algo {
BLAKE = 0,
BMW,
GROESTL,
SKEIN,
JH,
KECCAK,
LUFFA,
CUBEHASH,
SHAVITE,
SIMD,
#if HASH_FUNC_COUNT > 10
ECHO,
#endif
MAX_ALGOS_COUNT
};
inline void swap8(uint8_t *a, uint8_t *b)
{
uint8_t t = *a;
*a = *b;
*b = t;
}
inline void initPerm(uint8_t n[], int count)
{
for (int i = 0; i < count; i++)
n[i] = i;
}
static int nextPerm(uint8_t n[], int count)
{
int tail, i, j;
if (count <= 1)
return 0;
for (i = count - 1; i>0 && n[i - 1] >= n[i]; i--);
tail = i;
if (tail > 0) {
for (j = count - 1; j>tail && n[j] <= n[tail - 1]; j--);
swap8(&n[tail - 1], &n[j]);
}
for (i = tail, j = count - 1; i<j; i++, j--)
swap8(&n[i], &n[j]);
return (tail != 0);
}
static void getAlgoString(char *str, int seq)
{
uint8_t algoList[HASH_FUNC_COUNT];
char *sptr;
initPerm(algoList, HASH_FUNC_COUNT);
for (int k = 0; k < seq; k++) {
nextPerm(algoList, HASH_FUNC_COUNT);
}
sptr = str;
for (int j = 0; j < HASH_FUNC_COUNT; j++) {
if (algoList[j] >= 10)
sprintf(sptr, "%c", 'A' + (algoList[j] - 10));
else
sprintf(sptr, "%u", (uint32_t) algoList[j]);
sptr++;
}
*sptr = '\0';
}
static __thread uint32_t s_ntime = 0;
static uint32_t s_sequence = UINT32_MAX;
static uint8_t s_firstalgo = 0xFF;
static char hashOrder[HASH_FUNC_COUNT + 1] = { 0 };
#define INITIAL_DATE HASH_FUNC_BASE_TIMESTAMP
static inline uint32_t getCurrentAlgoSeq(uint32_t ntime)
{
// unlike x11evo, the permutation changes often (with ntime)
return (uint32_t) (ntime - INITIAL_DATE) % HASH_FUNC_COUNT_PERMUTATIONS;
}
// To finish...
static void get_travel_order(uint32_t ntime, char *permstr)
{
uint32_t seq = getCurrentAlgoSeq(ntime);
if (s_sequence != seq) {
getAlgoString(permstr, seq);
s_sequence = seq;
}
}
// CPU Hash
extern "C" void bitcore_hash(void *output, const void *input)
{
uint32_t _ALIGN(64) hash[64/4] = { 0 };
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;
sph_groestl512_context ctx_groestl;
sph_skein512_context ctx_skein;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_luffa512_context ctx_luffa1;
sph_cubehash512_context ctx_cubehash1;
sph_shavite512_context ctx_shavite1;
sph_simd512_context ctx_simd1;
#if HASH_FUNC_COUNT > 10
sph_echo512_context ctx_echo1;
#endif
if (s_sequence == UINT32_MAX) {
uint32_t *data = (uint32_t*) input;
const uint32_t ntime = (opt_benchmark || !data[17]) ? (uint32_t) time(NULL) : data[17];
get_travel_order(ntime, hashOrder);
}
void *in = (void*) input;
int size = 80;
const int hashes = (int) strlen(hashOrder);
for (int i = 0; i < hashes; i++)
{
const char elem = hashOrder[i];
uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
if (i > 0) {
in = (void*) hash;
size = 64;
}
switch (algo) {
case BLAKE:
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, in, size);
sph_blake512_close(&ctx_blake, hash);
break;
case BMW:
sph_bmw512_init(&ctx_bmw);
sph_bmw512(&ctx_bmw, in, size);
sph_bmw512_close(&ctx_bmw, hash);
break;
case GROESTL:
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, in, size);
sph_groestl512_close(&ctx_groestl, hash);
break;
case SKEIN:
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, in, size);
sph_skein512_close(&ctx_skein, hash);
break;
case JH:
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, in, size);
sph_jh512_close(&ctx_jh, hash);
break;
case KECCAK:
sph_keccak512_init(&ctx_keccak);
sph_keccak512(&ctx_keccak, in, size);
sph_keccak512_close(&ctx_keccak, hash);
break;
case LUFFA:
sph_luffa512_init(&ctx_luffa1);
sph_luffa512(&ctx_luffa1, in, size);
sph_luffa512_close(&ctx_luffa1, hash);
break;
case CUBEHASH:
sph_cubehash512_init(&ctx_cubehash1);
sph_cubehash512(&ctx_cubehash1, in, size);
sph_cubehash512_close(&ctx_cubehash1, hash);
break;
case SHAVITE:
sph_shavite512_init(&ctx_shavite1);
sph_shavite512(&ctx_shavite1, in, size);
sph_shavite512_close(&ctx_shavite1, hash);
break;
case SIMD:
sph_simd512_init(&ctx_simd1);
sph_simd512(&ctx_simd1, in, size);
sph_simd512_close(&ctx_simd1, hash);
break;
#if HASH_FUNC_COUNT > 10
case ECHO:
sph_echo512_init(&ctx_echo1);
sph_echo512(&ctx_echo1, in, size);
sph_echo512_close(&ctx_echo1, hash);
break;
#endif
}
}
memcpy(output, hash, 32);
}
//#define _DEBUG
#define _DEBUG_PREFIX "tt-"
#include "cuda_debug.cuh"
void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order);
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_bitcore(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 20 : 19;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 19=256*256*8;
//if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark) pdata[17] = swab32(0x59090909);
if (opt_debug || s_ntime != pdata[17] || s_sequence == UINT32_MAX) {
uint32_t ntime = swab32(work->data[17]);
get_travel_order(ntime, hashOrder);
s_ntime = pdata[17];
if (opt_debug && !thr_id) {
applog(LOG_DEBUG, "timetravel10 hash order %s (%08x)", hashOrder, ntime);
}
}
if (opt_benchmark)
ptarget[7] = 0x5;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
quark_blake512_cpu_init(thr_id, throughput);
quark_bmw512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
quark_keccak512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
x11_luffa512_cpu_init(thr_id, throughput);
x11_cubehash512_cpu_init(thr_id, throughput);
x11_shavite512_cpu_init(thr_id, throughput);
if (x11_simd512_cpu_init(thr_id, throughput) != 0) {
return 0;
}
#if HASH_FUNC_COUNT > 10
x11_echo512_cpu_init(thr_id, throughput);
#endif
CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput), -1);
CUDA_CALL_OR_RET_X(cudaMemset(d_hash[thr_id], 0, (size_t) 64 * throughput), -1);
cuda_check_cpu_init(thr_id, throughput);
init[thr_id] = true;
}
uint32_t endiandata[20];
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
cuda_check_cpu_setTarget(ptarget);
const int hashes = (int) strlen(hashOrder);
const char first = hashOrder[0];
const uint8_t algo80 = first >= 'A' ? first - 'A' + 10 : first - '0';
if (algo80 != s_firstalgo) {
s_firstalgo = algo80;
}
// first algo seems locked to blake in bitcore, fine!
quark_blake512_cpu_setBlock_80(thr_id, endiandata);
do {
// Hash with CUDA
quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]);
TRACE("blake80:");
for (int i = 1; i < hashes; i++)
{
const char elem = hashOrder[i];
const uint8_t algo64 = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch (algo64) {
case BLAKE:
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("blake :");
break;
case BMW:
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("bmw :");
break;
case GROESTL:
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("groestl:");
break;
case SKEIN:
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("skein :");
break;
case JH:
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("jh512 :");
break;
case KECCAK:
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("keccak :");
break;
case LUFFA:
x11_luffa512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("luffa :");
break;
case CUBEHASH:
x11_cubehash512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("cube :");
break;
case SHAVITE:
x11_shavite512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("shavite:");
break;
case SIMD:
x11_simd512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("simd :");
break;
#if HASH_FUNC_COUNT > 10
case ECHO:
x11_echo512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], i);
TRACE("echo :");
break;
#endif
}
}
*hashes_done = pdata[19] - first_nonce + throughput;
work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
if (work->nonces[0] != UINT32_MAX)
{
uint32_t _ALIGN(64) vhash[8];
const uint32_t Htarg = ptarget[7];
be32enc(&endiandata[19], work->nonces[0]);
bitcore_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) {
work->valid_nonces = 1;
work_set_target_ratio(work, vhash);
work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
pdata[19] = work->nonces[0];
if (work->nonces[1] != 0) {
be32enc(&endiandata[19], work->nonces[1]);
bitcore_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) {
bn_set_target_ratio(work, vhash, 1);
work->valid_nonces++;
}
pdata[19] = max(pdata[19], work->nonces[1]) + 1;
}
return work->valid_nonces;
} else if (vhash[7] > Htarg) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]);
pdata[19] = work->nonces[0] + 1;
continue;
}
}
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
return 0;
}
// cleanup
extern "C" void free_bitcore(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFree(d_hash[thr_id]);
quark_blake512_cpu_free(thr_id);
quark_groestl512_cpu_free(thr_id);
x11_simd512_cpu_free(thr_id);
cuda_check_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}