GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

491 lines
16 KiB

/*
* sha256(-t) CUDA implementation.
* tpruvot 2017
*/
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
#include <cuda_helper.h>
#include <miner.h>
__constant__ static uint32_t __align__(8) c_midstate76[8];
__constant__ static uint32_t __align__(8) c_dataEnd80[4];
const __constant__ uint32_t __align__(8) c_H256[8] = {
0x6A09E667U, 0xBB67AE85U, 0x3C6EF372U, 0xA54FF53AU,
0x510E527FU, 0x9B05688CU, 0x1F83D9ABU, 0x5BE0CD19U
};
__constant__ static uint32_t __align__(8) c_K[64];
__constant__ static uint32_t __align__(8) c_target[2];
__device__ uint64_t d_target[1];
static uint32_t* d_resNonces[MAX_GPUS] = { 0 };
// ------------------------------------------------------------------------------------------------
static const uint32_t cpu_H256[8] = {
0x6A09E667U, 0xBB67AE85U, 0x3C6EF372U, 0xA54FF53AU,
0x510E527FU, 0x9B05688CU, 0x1F83D9ABU, 0x5BE0CD19U
};
static const uint32_t cpu_K[64] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
#define ROTR ROTR32
__host__
static void sha256_step1_host(uint32_t a, uint32_t b, uint32_t c, uint32_t &d,
uint32_t e, uint32_t f, uint32_t g, uint32_t &h,
uint32_t in, const uint32_t Kshared)
{
uint32_t t1,t2;
uint32_t vxandx = (((f) ^ (g)) & (e)) ^ (g); // xandx(e, f, g);
uint32_t bsg21 = ROTR(e, 6) ^ ROTR(e, 11) ^ ROTR(e, 25); // bsg2_1(e);
uint32_t bsg20 = ROTR(a, 2) ^ ROTR(a, 13) ^ ROTR(a, 22); //bsg2_0(a);
uint32_t andorv = ((b) & (c)) | (((b) | (c)) & (a)); //andor32(a,b,c);
t1 = h + bsg21 + vxandx + Kshared + in;
t2 = bsg20 + andorv;
d = d + t1;
h = t1 + t2;
}
__host__
static void sha256_step2_host(uint32_t a, uint32_t b, uint32_t c, uint32_t &d,
uint32_t e, uint32_t f, uint32_t g, uint32_t &h,
uint32_t* in, uint32_t pc, const uint32_t Kshared)
{
uint32_t t1,t2;
int pcidx1 = (pc-2) & 0xF;
int pcidx2 = (pc-7) & 0xF;
int pcidx3 = (pc-15) & 0xF;
uint32_t inx0 = in[pc];
uint32_t inx1 = in[pcidx1];
uint32_t inx2 = in[pcidx2];
uint32_t inx3 = in[pcidx3];
uint32_t ssg21 = ROTR(inx1, 17) ^ ROTR(inx1, 19) ^ SPH_T32((inx1) >> 10); //ssg2_1(inx1);
uint32_t ssg20 = ROTR(inx3, 7) ^ ROTR(inx3, 18) ^ SPH_T32((inx3) >> 3); //ssg2_0(inx3);
uint32_t vxandx = (((f) ^ (g)) & (e)) ^ (g); // xandx(e, f, g);
uint32_t bsg21 = ROTR(e, 6) ^ ROTR(e, 11) ^ ROTR(e, 25); // bsg2_1(e);
uint32_t bsg20 = ROTR(a, 2) ^ ROTR(a, 13) ^ ROTR(a, 22); //bsg2_0(a);
uint32_t andorv = ((b) & (c)) | (((b) | (c)) & (a)); //andor32(a,b,c);
in[pc] = ssg21 + inx2 + ssg20 + inx0;
t1 = h + bsg21 + vxandx + Kshared + in[pc];
t2 = bsg20 + andorv;
d = d + t1;
h = t1 + t2;
}
__host__
static void sha256_round_body_host(uint32_t* in, uint32_t* state, const uint32_t* Kshared)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
sha256_step1_host(a,b,c,d,e,f,g,h,in[ 0], Kshared[ 0]);
sha256_step1_host(h,a,b,c,d,e,f,g,in[ 1], Kshared[ 1]);
sha256_step1_host(g,h,a,b,c,d,e,f,in[ 2], Kshared[ 2]);
sha256_step1_host(f,g,h,a,b,c,d,e,in[ 3], Kshared[ 3]);
sha256_step1_host(e,f,g,h,a,b,c,d,in[ 4], Kshared[ 4]);
sha256_step1_host(d,e,f,g,h,a,b,c,in[ 5], Kshared[ 5]);
sha256_step1_host(c,d,e,f,g,h,a,b,in[ 6], Kshared[ 6]);
sha256_step1_host(b,c,d,e,f,g,h,a,in[ 7], Kshared[ 7]);
sha256_step1_host(a,b,c,d,e,f,g,h,in[ 8], Kshared[ 8]);
sha256_step1_host(h,a,b,c,d,e,f,g,in[ 9], Kshared[ 9]);
sha256_step1_host(g,h,a,b,c,d,e,f,in[10], Kshared[10]);
sha256_step1_host(f,g,h,a,b,c,d,e,in[11], Kshared[11]);
sha256_step1_host(e,f,g,h,a,b,c,d,in[12], Kshared[12]);
sha256_step1_host(d,e,f,g,h,a,b,c,in[13], Kshared[13]);
sha256_step1_host(c,d,e,f,g,h,a,b,in[14], Kshared[14]);
sha256_step1_host(b,c,d,e,f,g,h,a,in[15], Kshared[15]);
for (int i=0; i<3; i++)
{
sha256_step2_host(a,b,c,d,e,f,g,h,in,0, Kshared[16+16*i]);
sha256_step2_host(h,a,b,c,d,e,f,g,in,1, Kshared[17+16*i]);
sha256_step2_host(g,h,a,b,c,d,e,f,in,2, Kshared[18+16*i]);
sha256_step2_host(f,g,h,a,b,c,d,e,in,3, Kshared[19+16*i]);
sha256_step2_host(e,f,g,h,a,b,c,d,in,4, Kshared[20+16*i]);
sha256_step2_host(d,e,f,g,h,a,b,c,in,5, Kshared[21+16*i]);
sha256_step2_host(c,d,e,f,g,h,a,b,in,6, Kshared[22+16*i]);
sha256_step2_host(b,c,d,e,f,g,h,a,in,7, Kshared[23+16*i]);
sha256_step2_host(a,b,c,d,e,f,g,h,in,8, Kshared[24+16*i]);
sha256_step2_host(h,a,b,c,d,e,f,g,in,9, Kshared[25+16*i]);
sha256_step2_host(g,h,a,b,c,d,e,f,in,10,Kshared[26+16*i]);
sha256_step2_host(f,g,h,a,b,c,d,e,in,11,Kshared[27+16*i]);
sha256_step2_host(e,f,g,h,a,b,c,d,in,12,Kshared[28+16*i]);
sha256_step2_host(d,e,f,g,h,a,b,c,in,13,Kshared[29+16*i]);
sha256_step2_host(c,d,e,f,g,h,a,b,in,14,Kshared[30+16*i]);
sha256_step2_host(b,c,d,e,f,g,h,a,in,15,Kshared[31+16*i]);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
#define xor3b(a,b,c) (a ^ b ^ c)
__device__ __forceinline__ uint32_t bsg2_0(const uint32_t x)
{
return xor3b(ROTR32(x,2),ROTR32(x,13),ROTR32(x,22));
}
__device__ __forceinline__ uint32_t bsg2_1(const uint32_t x)
{
return xor3b(ROTR32(x,6),ROTR32(x,11),ROTR32(x,25));
}
__device__ __forceinline__ uint32_t ssg2_0(const uint32_t x)
{
return xor3b(ROTR32(x,7),ROTR32(x,18),(x>>3));
}
__device__ __forceinline__ uint32_t ssg2_1(const uint32_t x)
{
return xor3b(ROTR32(x,17),ROTR32(x,19),(x>>10));
}
__device__ __forceinline__ uint32_t andor32(const uint32_t a, const uint32_t b, const uint32_t c)
{
uint32_t result;
asm("{\n\t"
".reg .u32 m,n,o;\n\t"
"and.b32 m, %1, %2;\n\t"
" or.b32 n, %1, %2;\n\t"
"and.b32 o, n, %3;\n\t"
" or.b32 %0, m, o ;\n\t"
"}\n\t" : "=r"(result) : "r"(a), "r"(b), "r"(c)
);
return result;
}
__device__ __forceinline__ uint2 vectorizeswap(uint64_t v) {
uint2 result;
asm("mov.b64 {%0,%1},%2; \n\t"
: "=r"(result.y), "=r"(result.x) : "l"(v));
return result;
}
__device__
static void sha2_step1(uint32_t a, uint32_t b, uint32_t c, uint32_t &d, uint32_t e, uint32_t f, uint32_t g, uint32_t &h,
uint32_t in, const uint32_t Kshared)
{
uint32_t t1,t2;
uint32_t vxandx = xandx(e, f, g);
uint32_t bsg21 = bsg2_1(e);
uint32_t bsg20 = bsg2_0(a);
uint32_t andorv = andor32(a,b,c);
t1 = h + bsg21 + vxandx + Kshared + in;
t2 = bsg20 + andorv;
d = d + t1;
h = t1 + t2;
}
__device__
static void sha2_step2(uint32_t a, uint32_t b, uint32_t c, uint32_t &d, uint32_t e, uint32_t f, uint32_t g, uint32_t &h,
uint32_t* in, uint32_t pc, const uint32_t Kshared)
{
uint32_t t1,t2;
int pcidx1 = (pc-2) & 0xF;
int pcidx2 = (pc-7) & 0xF;
int pcidx3 = (pc-15) & 0xF;
uint32_t inx0 = in[pc];
uint32_t inx1 = in[pcidx1];
uint32_t inx2 = in[pcidx2];
uint32_t inx3 = in[pcidx3];
uint32_t ssg21 = ssg2_1(inx1);
uint32_t ssg20 = ssg2_0(inx3);
uint32_t vxandx = xandx(e, f, g);
uint32_t bsg21 = bsg2_1(e);
uint32_t bsg20 = bsg2_0(a);
uint32_t andorv = andor32(a,b,c);
in[pc] = ssg21 + inx2 + ssg20 + inx0;
t1 = h + bsg21 + vxandx + Kshared + in[pc];
t2 = bsg20 + andorv;
d = d + t1;
h = t1 + t2;
}
__device__
static void sha256_round_body(uint32_t* in, uint32_t* state, uint32_t* const Kshared)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
sha2_step1(a,b,c,d,e,f,g,h,in[ 0], Kshared[ 0]);
sha2_step1(h,a,b,c,d,e,f,g,in[ 1], Kshared[ 1]);
sha2_step1(g,h,a,b,c,d,e,f,in[ 2], Kshared[ 2]);
sha2_step1(f,g,h,a,b,c,d,e,in[ 3], Kshared[ 3]);
sha2_step1(e,f,g,h,a,b,c,d,in[ 4], Kshared[ 4]);
sha2_step1(d,e,f,g,h,a,b,c,in[ 5], Kshared[ 5]);
sha2_step1(c,d,e,f,g,h,a,b,in[ 6], Kshared[ 6]);
sha2_step1(b,c,d,e,f,g,h,a,in[ 7], Kshared[ 7]);
sha2_step1(a,b,c,d,e,f,g,h,in[ 8], Kshared[ 8]);
sha2_step1(h,a,b,c,d,e,f,g,in[ 9], Kshared[ 9]);
sha2_step1(g,h,a,b,c,d,e,f,in[10], Kshared[10]);
sha2_step1(f,g,h,a,b,c,d,e,in[11], Kshared[11]);
sha2_step1(e,f,g,h,a,b,c,d,in[12], Kshared[12]);
sha2_step1(d,e,f,g,h,a,b,c,in[13], Kshared[13]);
sha2_step1(c,d,e,f,g,h,a,b,in[14], Kshared[14]);
sha2_step1(b,c,d,e,f,g,h,a,in[15], Kshared[15]);
#pragma unroll
for (int i=0; i<3; i++)
{
sha2_step2(a,b,c,d,e,f,g,h,in,0, Kshared[16+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in,1, Kshared[17+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in,2, Kshared[18+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in,3, Kshared[19+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in,4, Kshared[20+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in,5, Kshared[21+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in,6, Kshared[22+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in,7, Kshared[23+16*i]);
sha2_step2(a,b,c,d,e,f,g,h,in,8, Kshared[24+16*i]);
sha2_step2(h,a,b,c,d,e,f,g,in,9, Kshared[25+16*i]);
sha2_step2(g,h,a,b,c,d,e,f,in,10,Kshared[26+16*i]);
sha2_step2(f,g,h,a,b,c,d,e,in,11,Kshared[27+16*i]);
sha2_step2(e,f,g,h,a,b,c,d,in,12,Kshared[28+16*i]);
sha2_step2(d,e,f,g,h,a,b,c,in,13,Kshared[29+16*i]);
sha2_step2(c,d,e,f,g,h,a,b,in,14,Kshared[30+16*i]);
sha2_step2(b,c,d,e,f,g,h,a,in,15,Kshared[31+16*i]);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
__device__
static void sha256_round_last(uint32_t* in, uint32_t* state, uint32_t* const Kshared)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
sha2_step1(a,b,c,d, e,f,g,h, in[ 0], Kshared[ 0]);
sha2_step1(h,a,b,c, d,e,f,g, in[ 1], Kshared[ 1]);
sha2_step1(g,h,a,b, c,d,e,f, in[ 2], Kshared[ 2]);
sha2_step1(f,g,h,a, b,c,d,e, in[ 3], Kshared[ 3]);
sha2_step1(e,f,g,h, a,b,c,d, in[ 4], Kshared[ 4]);
sha2_step1(d,e,f,g, h,a,b,c, in[ 5], Kshared[ 5]);
sha2_step1(c,d,e,f, g,h,a,b, in[ 6], Kshared[ 6]);
sha2_step1(b,c,d,e, f,g,h,a, in[ 7], Kshared[ 7]);
sha2_step1(a,b,c,d, e,f,g,h, in[ 8], Kshared[ 8]);
sha2_step1(h,a,b,c, d,e,f,g, in[ 9], Kshared[ 9]);
sha2_step1(g,h,a,b, c,d,e,f, in[10], Kshared[10]);
sha2_step1(f,g,h,a, b,c,d,e, in[11], Kshared[11]);
sha2_step1(e,f,g,h, a,b,c,d, in[12], Kshared[12]);
sha2_step1(d,e,f,g, h,a,b,c, in[13], Kshared[13]);
sha2_step1(c,d,e,f, g,h,a,b, in[14], Kshared[14]);
sha2_step1(b,c,d,e, f,g,h,a, in[15], Kshared[15]);
#pragma unroll
for (int i=0; i<2; i++)
{
sha2_step2(a,b,c,d, e,f,g,h, in, 0, Kshared[16+16*i]);
sha2_step2(h,a,b,c, d,e,f,g, in, 1, Kshared[17+16*i]);
sha2_step2(g,h,a,b, c,d,e,f, in, 2, Kshared[18+16*i]);
sha2_step2(f,g,h,a, b,c,d,e, in, 3, Kshared[19+16*i]);
sha2_step2(e,f,g,h, a,b,c,d, in, 4, Kshared[20+16*i]);
sha2_step2(d,e,f,g, h,a,b,c, in, 5, Kshared[21+16*i]);
sha2_step2(c,d,e,f, g,h,a,b, in, 6, Kshared[22+16*i]);
sha2_step2(b,c,d,e, f,g,h,a, in, 7, Kshared[23+16*i]);
sha2_step2(a,b,c,d, e,f,g,h, in, 8, Kshared[24+16*i]);
sha2_step2(h,a,b,c, d,e,f,g, in, 9, Kshared[25+16*i]);
sha2_step2(g,h,a,b, c,d,e,f, in,10, Kshared[26+16*i]);
sha2_step2(f,g,h,a, b,c,d,e, in,11, Kshared[27+16*i]);
sha2_step2(e,f,g,h, a,b,c,d, in,12, Kshared[28+16*i]);
sha2_step2(d,e,f,g, h,a,b,c, in,13, Kshared[29+16*i]);
sha2_step2(c,d,e,f, g,h,a,b, in,14, Kshared[30+16*i]);
sha2_step2(b,c,d,e, f,g,h,a, in,15, Kshared[31+16*i]);
}
sha2_step2(a,b,c,d, e,f,g,h, in, 0, Kshared[16+16*2]);
sha2_step2(h,a,b,c, d,e,f,g, in, 1, Kshared[17+16*2]);
sha2_step2(g,h,a,b, c,d,e,f, in, 2, Kshared[18+16*2]);
sha2_step2(f,g,h,a, b,c,d,e, in, 3, Kshared[19+16*2]);
sha2_step2(e,f,g,h, a,b,c,d, in, 4, Kshared[20+16*2]);
sha2_step2(d,e,f,g, h,a,b,c, in, 5, Kshared[21+16*2]);
sha2_step2(c,d,e,f, g,h,a,b, in, 6, Kshared[22+16*2]);
sha2_step2(b,c,d,e, f,g,h,a, in, 7, Kshared[23+16*2]);
sha2_step2(a,b,c,d, e,f,g,h, in, 8, Kshared[24+16*2]);
sha2_step2(h,a,b,c, d,e,f,g, in, 9, Kshared[25+16*2]);
sha2_step2(g,h,a,b, c,d,e,f, in,10, Kshared[26+16*2]);
sha2_step2(f,g,h,a, b,c,d,e, in,11, Kshared[27+16*2]);
sha2_step2(e,f,g,h, a,b,c,d, in,12, Kshared[28+16*2]);
sha2_step2(d,e,f,g, h,a,b,c, in,13, Kshared[29+16*2]);
state[6] += g;
state[7] += h;
}
__device__
uint64_t cuda_swab32ll(uint64_t x) {
return MAKE_ULONGLONG(cuda_swab32(_LODWORD(x)), cuda_swab32(_HIDWORD(x)));
}
__global__
/*__launch_bounds__(256,3)*/
void sha256t_gpu_hash_shared(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonces)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
__shared__ uint32_t s_K[64*4];
//s_K[thread & 63] = c_K[thread & 63];
if (threadIdx.x < 64U) s_K[threadIdx.x] = c_K[threadIdx.x];
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t dat[16];
AS_UINT2(dat) = AS_UINT2(c_dataEnd80);
dat[ 2] = c_dataEnd80[2];
dat[ 3] = nonce;
dat[ 4] = 0x80000000;
dat[15] = 0x280;
#pragma unroll
for (int i=5; i<15; i++) dat[i] = 0;
uint32_t buf[8];
#pragma unroll
for (int i=0; i<8; i+=2) AS_UINT2(&buf[i]) = AS_UINT2(&c_midstate76[i]);
//for (int i=0; i<8; i++) buf[i] = c_midstate76[i];
sha256_round_body(dat, buf, s_K);
// second sha256
#pragma unroll
for (int i=0; i<8; i++) dat[i] = buf[i];
dat[8] = 0x80000000;
#pragma unroll
for (int i=9; i<15; i++) dat[i] = 0;
dat[15] = 0x100;
#pragma unroll
for (int i=0; i<8; i++) buf[i] = c_H256[i];
sha256_round_body(dat, buf, s_K);
// last sha256
#pragma unroll
for (int i=0; i<8; i++) dat[i] = buf[i];
dat[8] = 0x80000000;
#pragma unroll
for (int i=9; i<15; i++) dat[i] = 0;
dat[15] = 0x100;
#pragma unroll
for (int i=0; i<8; i++) buf[i] = c_H256[i];
sha256_round_last(dat, buf, s_K);
// valid nonces
uint64_t high = cuda_swab32ll(((uint64_t*)buf)[3]);
if (high <= c_target[0]) {
//printf("%08x %08x - %016llx %016llx - %08x %08x\n", buf[7], buf[6], high, d_target[0], c_target[1], c_target[0]);
resNonces[1] = atomicExch(resNonces, nonce);
//d_target[0] = high;
}
}
}
__host__
void sha256t_init(int thr_id)
{
cudaMemcpyToSymbol(c_K, cpu_K, sizeof(cpu_K), 0, cudaMemcpyHostToDevice);
CUDA_SAFE_CALL(cudaMalloc(&d_resNonces[thr_id], 2*sizeof(uint32_t)));
}
__host__
void sha256t_free(int thr_id)
{
if (d_resNonces[thr_id]) cudaFree(d_resNonces[thr_id]);
d_resNonces[thr_id] = NULL;
}
__host__
void sha256t_setBlock_80(uint32_t *pdata, uint32_t *ptarget)
{
uint32_t _ALIGN(64) in[16], buf[8], end[4];
for (int i=0;i<16;i++) in[i] = cuda_swab32(pdata[i]);
for (int i=0;i<8;i++) buf[i] = cpu_H256[i];
for (int i=0;i<4;i++) end[i] = cuda_swab32(pdata[16+i]);
sha256_round_body_host(in, buf, cpu_K);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_midstate76, buf, 32, 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_dataEnd80, end, sizeof(end), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_target, &ptarget[6], 8, 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_target, &ptarget[6], 8, 0, cudaMemcpyHostToDevice));
}
__host__
void sha256t_hash_80(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *resNonces)
{
const uint32_t threadsperblock = 128;
dim3 grid(threads/threadsperblock);
dim3 block(threadsperblock);
CUDA_SAFE_CALL(cudaMemset(d_resNonces[thr_id], 0xFF, 2 * sizeof(uint32_t)));
cudaThreadSynchronize();
sha256t_gpu_hash_shared <<<grid, block>>> (threads, startNonce, d_resNonces[thr_id]);
cudaThreadSynchronize();
CUDA_SAFE_CALL(cudaMemcpy(resNonces, d_resNonces[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost));
if (resNonces[0] == resNonces[1]) {
resNonces[1] = UINT32_MAX;
}
}