1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-12 15:57:59 +00:00
ccminer/JHA/jha.cu

266 lines
7.7 KiB
Plaintext
Raw Normal View History

/**
* JHA v8 algorithm - compatible implementation
* @author tpruvot@github 05-2017
*/
extern "C" {
#include "sph/sph_keccak.h"
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "sph/sph_jh.h"
#include "sph/sph_skein.h"
}
#include "miner.h"
#include "cuda_helper.h"
#include "quark/cuda_quark.h"
static uint32_t *d_hash[MAX_GPUS] = { 0 };
static uint32_t *d_hash_br2[MAX_GPUS];
static uint32_t *d_tempBranch[MAX_GPUS];
extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads);
extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen);
extern void jackpot_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order);
// CPU HASH
extern "C" void jha_hash(void *output, const void *input)
{
uint32_t hash[16];
sph_blake512_context ctx_blake;
sph_groestl512_context ctx_groestl;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_skein512_context ctx_skein;
sph_keccak512_init(&ctx_keccak);
sph_keccak512 (&ctx_keccak, input, 80);
sph_keccak512_close(&ctx_keccak, hash);
for (int rnd = 0; rnd < 3; rnd++)
{
if (hash[0] & 0x01) {
sph_groestl512_init(&ctx_groestl);
sph_groestl512 (&ctx_groestl, (&hash), 64);
sph_groestl512_close(&ctx_groestl, (&hash));
}
else {
sph_skein512_init(&ctx_skein);
sph_skein512 (&ctx_skein, (&hash), 64);
sph_skein512_close(&ctx_skein, (&hash));
}
if (hash[0] & 0x01) {
sph_blake512_init(&ctx_blake);
sph_blake512 (&ctx_blake, (&hash), 64);
sph_blake512_close(&ctx_blake, (&hash));
}
else {
sph_jh512_init(&ctx_jh);
sph_jh512 (&ctx_jh, (&hash), 64);
sph_jh512_close(&ctx_jh, (&hash));
}
}
memcpy(output, hash, 32);
}
__global__ __launch_bounds__(128, 8)
void jha_filter_gpu(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t);
uint4 *psrc = (uint4*) (&d_hash[offset]);
d_NonceBranch[thread] = ((uint8_t*)psrc)[0] & 0x01;
if (d_NonceBranch[thread]) return;
// uint4 = 4x uint32_t = 16 bytes
uint4 *pdst = (uint4*) (&d_branch2[offset]);
pdst[0] = psrc[0];
pdst[1] = psrc[1];
pdst[2] = psrc[2];
pdst[3] = psrc[3];
}
}
__global__ __launch_bounds__(128, 8)
void jha_merge_gpu(const uint32_t threads, uint32_t* d_hash, uint32_t* d_branch2, uint32_t* const d_NonceBranch)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads && !d_NonceBranch[thread])
{
const uint32_t offset = thread * 16U;
uint4 *pdst = (uint4*) (&d_hash[offset]);
uint4 *psrc = (uint4*) (&d_branch2[offset]);
pdst[0] = psrc[0];
pdst[1] = psrc[1];
pdst[2] = psrc[2];
pdst[3] = psrc[3];
}
}
__host__
uint32_t jha_filter_cpu(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
// extract algo permution hashes to a second branch buffer
jha_filter_gpu <<<grid, block>>> (threads, inpHashes, d_branch2, d_tempBranch[thr_id]);
return threads;
}
__host__
void jha_merge_cpu(const int thr_id, const uint32_t threads, uint32_t *outpHashes, uint32_t* d_branch2)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
// put back second branch hashes to the common buffer d_hash
jha_merge_gpu <<<grid, block>>> (threads, outpHashes, d_branch2, d_tempBranch[thr_id]);
}
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_jha(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(64) endiandata[22];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int dev_id = device_map[thr_id];
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
ptarget[7] = 0x000f;
if (!init[thr_id])
{
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
cuda_get_arch(thr_id);
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
CUDA_SAFE_CALL(cudaMalloc(&d_hash_br2[thr_id], (size_t) 64 * throughput));
CUDA_SAFE_CALL(cudaMalloc(&d_tempBranch[thr_id], sizeof(uint32_t) * throughput));
jackpot_keccak512_cpu_init(thr_id, throughput);
quark_blake512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
cuda_check_cpu_init(thr_id, throughput);
init[thr_id] = true;
}
for (int k=0; k < 22; k++)
be32enc(&endiandata[k], pdata[k]);
jackpot_keccak512_cpu_setBlock((void*)endiandata, 80);
cuda_check_cpu_setTarget(ptarget);
do {
int order = 0;
jackpot_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
for (int rnd = 0; rnd < 3; rnd++)
{
jha_filter_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
jha_merge_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
jha_filter_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
jha_merge_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
}
*hashes_done = pdata[19] - first_nonce + throughput;
CUDA_LOG_ERROR();
work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
if (work->nonces[0] != UINT32_MAX)
{
const uint32_t Htarg = ptarget[7];
uint32_t _ALIGN(64) vhash[8];
be32enc(&endiandata[19], work->nonces[0]);
jha_hash(vhash, endiandata);
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
work->valid_nonces = 1;
work_set_target_ratio(work, vhash);
work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
if (work->nonces[1] != 0) {
be32enc(&endiandata[19], work->nonces[1]);
jha_hash(vhash, endiandata);
bn_set_target_ratio(work, vhash, 1);
work->valid_nonces++;
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
} else {
pdata[19] = work->nonces[0] + 1; // cursor
}
return work->valid_nonces;
}
else if (vhash[7] > Htarg) {
gpu_increment_reject(thr_id);
if (!opt_quiet)
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]);
pdata[19] = work->nonces[0] + 1;
continue;
}
}
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
CUDA_LOG_ERROR();
return 0;
}
// cleanup
extern "C" void free_jha(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFree(d_hash[thr_id]);
cudaFree(d_hash_br2[thr_id]);
cudaFree(d_tempBranch[thr_id]);
quark_blake512_cpu_free(thr_id);
quark_groestl512_cpu_free(thr_id);
cuda_check_cpu_free(thr_id);
CUDA_LOG_ERROR();
cudaDeviceSynchronize();
init[thr_id] = false;
}