1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-08 22:07:56 +00:00
ccminer/scrypt/blake.cu

454 lines
10 KiB
Plaintext
Raw Normal View History

//
// =============== BLAKE part on nVidia GPU ======================
//
// This is the generic "default" implementation when no architecture
// specific implementation is available in the kernel.
//
// NOTE: compile this .cu module for compute_10,sm_10 with --maxrregcount=64
//
// TODO: CUDA porting work remains to be done.
//
#include <map>
#include <stdint.h>
#include "miner.h"
#include "salsa_kernel.h"
#include "cuda_helper.h"
typedef uint32_t sph_u32;
#define SPH_ROTL32 ROTL32
#define SPH_ROTR32 ROTR32
__constant__ uint64_t ptarget64[4];
__constant__ uint32_t pdata[20];
// define some error checking macros
#define DELIMITER '/'
#define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ )
#undef checkCudaErrors
#define checkCudaErrors(x) \
{ \
cudaGetLastError(); \
x; \
cudaError_t err = cudaGetLastError(); \
if (err != cudaSuccess && !abort_flag) \
applog(LOG_ERR, "GPU #%d: cudaError %d (%s) (%s line %d)\n", device_map[thr_id], err, cudaGetErrorString(err), __FILENAME__, __LINE__); \
}
// from salsa_kernel.cu
extern std::map<int, uint32_t *> context_idata[2];
extern std::map<int, uint32_t *> context_odata[2];
extern std::map<int, cudaStream_t> context_streams[2];
extern std::map<int, uint32_t *> context_hash[2];
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
/**
* Encode a 32-bit value into the provided buffer (big endian convention).
*
* @param dst the destination buffer
* @param val the 32-bit value to encode
*/
static __device__ void
cuda_sph_enc32be(void *dst, sph_u32 val)
{
*(sph_u32 *)dst = cuda_swab32(val);
}
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#define COMPRESS32 do { \
sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \
sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \
sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = S0 ^ CS0; \
V9 = S1 ^ CS1; \
VA = S2 ^ CS2; \
VB = S3 ^ CS3; \
VC = T0 ^ CS4; \
VD = T0 ^ CS5; \
VE = T1 ^ CS6; \
VF = T1 ^ CS7; \
M0 = input[0]; \
M1 = input[1]; \
M2 = input[2]; \
M3 = input[3]; \
M4 = input[4]; \
M5 = input[5]; \
M6 = input[6]; \
M7 = input[7]; \
M8 = input[8]; \
M9 = input[9]; \
MA = input[10]; \
MB = input[11]; \
MC = input[12]; \
MD = input[13]; \
ME = input[14]; \
MF = input[15]; \
ROUND_S(0); \
ROUND_S(1); \
ROUND_S(2); \
ROUND_S(3); \
ROUND_S(4); \
ROUND_S(5); \
ROUND_S(6); \
ROUND_S(7); \
H0 ^= S0 ^ V0 ^ V8; \
H1 ^= S1 ^ V1 ^ V9; \
H2 ^= S2 ^ V2 ^ VA; \
H3 ^= S3 ^ V3 ^ VB; \
H4 ^= S0 ^ V4 ^ VC; \
H5 ^= S1 ^ V5 ^ VD; \
H6 ^= S2 ^ V6 ^ VE; \
H7 ^= S3 ^ V7 ^ VF; \
} while (0)
__global__
void cuda_blake256_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate )
{
uint32_t input[16];
uint64_t output[4];
#pragma unroll
for (int i=0; i < 16; ++i) input[i] = pdata[i];
sph_u32 H0 = 0x6A09E667;
sph_u32 H1 = 0xBB67AE85;
sph_u32 H2 = 0x3C6EF372;
sph_u32 H3 = 0xA54FF53A;
sph_u32 H4 = 0x510E527F;
sph_u32 H5 = 0x9B05688C;
sph_u32 H6 = 0x1F83D9AB;
sph_u32 H7 = 0x5BE0CD19;
sph_u32 S0 = 0;
sph_u32 S1 = 0;
sph_u32 S2 = 0;
sph_u32 S3 = 0;
sph_u32 T0 = 0;
sph_u32 T1 = 0;
T0 = SPH_T32(T0 + 512);
COMPRESS32;
#pragma unroll
for (int i=0; i < 3; ++i) input[i] = pdata[16+i];
input[3] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
input[4] = 0x80000000;
#pragma unroll 8
for (int i=5; i < 13; ++i) input[i] = 0;
input[13] = 0x00000001;
input[14] = T1;
input[15] = T0 + 128;
T0 = SPH_T32(T0 + 128);
COMPRESS32;
cuda_sph_enc32be((unsigned char*)output + 4*6, H6);
cuda_sph_enc32be((unsigned char*)output + 4*7, H7);
if (validate || output[3] <= ptarget64[3])
{
// this data is only needed when we actually need to save the hashes
cuda_sph_enc32be((unsigned char*)output + 4*0, H0);
cuda_sph_enc32be((unsigned char*)output + 4*1, H1);
cuda_sph_enc32be((unsigned char*)output + 4*2, H2);
cuda_sph_enc32be((unsigned char*)output + 4*3, H3);
cuda_sph_enc32be((unsigned char*)output + 4*4, H4);
cuda_sph_enc32be((unsigned char*)output + 4*5, H5);
}
if (validate)
{
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
#pragma unroll
for (int i=0; i < 4; ++i) g_out[i] = output[i];
}
if (output[3] <= ptarget64[3]) {
uint64_t *g_good64 = (uint64_t*)g_good;
if (output[3] < g_good64[3]) {
g_good64[3] = output[3];
g_good64[2] = output[2];
g_good64[1] = output[1];
g_good64[0] = output[0];
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
static std::map<int, uint32_t *> context_good[2];
static bool init[MAX_GPUS] = { 0 };
bool default_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
if (!init[thr_id])
{
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 80, 0, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 32, 0, cudaMemcpyHostToDevice));
return context_good[0][thr_id] && context_good[1][thr_id];
}
void default_do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
cuda_blake256_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
// copy hashes from device memory to host (ALL hashes, lots of data...)
if (do_d2h && hash != NULL) {
size_t mem_size = throughput * sizeof(uint32_t) * 8;
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
else if (hash != NULL) {
// asynchronous copy of winning nonce (just 4 bytes...)
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
}
void default_free_blake256(int thr_id)
{
if (init[thr_id]) {
cudaFree(context_good[0][thr_id]);
cudaFree(context_good[1][thr_id]);
init[thr_id] = false;
}
}