You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
6.7 KiB
276 lines
6.7 KiB
/* |
|
* tiger-192 djm34 |
|
* |
|
*/ |
|
|
|
/* |
|
* tiger-192 kernel implementation. |
|
* |
|
* ==========================(LICENSE BEGIN)============================ |
|
* |
|
* Copyright (c) 2014 djm34 |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining |
|
* a copy of this software and associated documentation files (the |
|
* "Software"), to deal in the Software without restriction, including |
|
* without limitation the rights to use, copy, modify, merge, publish, |
|
* distribute, sublicense, and/or sell copies of the Software, and to |
|
* permit persons to whom the Software is furnished to do so, subject to |
|
* the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be |
|
* included in all copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
* |
|
* ===========================(LICENSE END)============================= |
|
* |
|
* @author phm <phm@inbox.com> |
|
*/ |
|
//#include <stdio.h> |
|
#include <memory.h> |
|
|
|
#include "cuda_helper.h" |
|
|
|
#define HIWORD _HIWORD |
|
#define LOWORD _LOWORD |
|
|
|
#if 0 |
|
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } |
|
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true) |
|
{ |
|
if (code != cudaSuccess) |
|
{ |
|
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); |
|
if (abort) exit(code); |
|
} |
|
} |
|
#endif |
|
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
|
|
|
__device__ __forceinline__ |
|
void bigmul(uint64_t *w, uint64_t* am, uint64_t* bm, int sizea, int sizeb, int thread) |
|
{ |
|
int threads = 256*256*8*2; |
|
#pragma unroll |
|
for (int i=0;i<sizea+sizeb;i++) {w[i*threads+thread]=0;} |
|
#pragma unroll |
|
for (int i=0;i<sizeb;i++) |
|
{ |
|
uint64_t c=0; |
|
uint64_t u=0,v=0; |
|
#pragma unroll |
|
for (int j=0;j<sizea;j++) { |
|
muladd128(u,v,am[j*threads+thread],bm[i*threads+thread],w[(i+j)*threads+thread],c); |
|
w[(i+j)*threads+thread]=v; |
|
c=u; |
|
} |
|
w[(i+sizea)*threads+thread]=u; |
|
} |
|
} |
|
|
|
__global__ |
|
void m7_bigmul1_gpu(int threads, int sizea, int sizeb, uint64_t* am, uint64_t* bm, uint64_t *w) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
#pragma unroll |
|
for (int i=0;i<sizea+sizeb;i++) {w[i*threads+thread]=0;} |
|
#pragma unroll |
|
for (int i=0;i<sizeb;i++) { |
|
uint64_t c=0; |
|
uint64_t u=0,v=0; |
|
#pragma unroll |
|
for (int j=0;j<sizea;j++) { |
|
muladd128(u,v,am[j*threads+thread],bm[i*threads+thread],w[(i+j)*threads+thread],c); |
|
w[(i+j)*threads+thread]=v; |
|
c=u; |
|
} |
|
w[(i+sizea)*threads+thread]=u; |
|
} |
|
} // thread |
|
} |
|
|
|
__global__ |
|
void m7_bigmul_unroll1_gpu(int threads, uint64_t* am, uint64_t* bm, uint64_t *w) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
#pragma unroll 32 |
|
for (int i=0;i<32;i++) { |
|
w[i*threads + thread]=0; |
|
} |
|
|
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll 32 |
|
#endif |
|
for (int i=0;i<32;i++) |
|
{ |
|
uint64_t c=0; |
|
uint64_t u=0,v=0; |
|
#pragma unroll 3 |
|
for (int j=0;j<3;j++) { |
|
muladd128(u,v,am[j*threads+thread],bm[i*threads+thread],w[(i+j)*threads+thread],c); |
|
w[(i+j)*threads+thread]=v; |
|
c=u; |
|
} |
|
w[(i+3)*threads+thread]=u; |
|
} |
|
} // threads |
|
} |
|
|
|
__global__ |
|
void m7_bigmul_unroll1_gpu_std(int threads, uint64_t* amg, uint64_t* bmg, uint64_t *wg) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
uint64_t * am = amg + 8*thread; |
|
uint64_t * bm = bmg + 38*thread; |
|
uint64_t * w = wg + 38*thread; |
|
|
|
#pragma unroll 32 |
|
for (int i=0;i<32;i++) { |
|
w[i]=0; |
|
} |
|
|
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll 32 |
|
#endif |
|
for (int i=0;i<32;i++) |
|
{ |
|
uint64_t c=0; |
|
uint64_t u=0,v=0; |
|
#pragma unroll 3 |
|
for (int j=0;j<3;j++) { |
|
muladd128(u,v,am[j],bm[i],w[(i+j)],c); |
|
w[(i+j)]=v; |
|
c=u; |
|
} |
|
w[(i+3)]=u; |
|
} |
|
} // threads |
|
} |
|
|
|
__global__ |
|
void m7_bigmul_unroll2_gpu(int threads, uint64_t* am, uint64_t* bm, uint64_t *w) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll |
|
#endif |
|
for (int i=0;i<38;i++) { |
|
w[i*threads+thread]=0; |
|
} |
|
|
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll |
|
#endif |
|
for (int i=0;i<35;i++) |
|
{ |
|
uint64_t c=0; |
|
uint64_t u=0,v=0; |
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll |
|
#endif |
|
for (int j=0;j<3;j++) { |
|
muladd128(u,v,am[j*threads+thread],bm[i*threads+thread],w[(i+j)*threads+thread],c); |
|
w[(i+j)*threads+thread]=v; |
|
c=u; |
|
} |
|
w[(i+3)*threads+thread]=u; |
|
} |
|
} // thread |
|
} |
|
|
|
__global__ |
|
void m7_bigmul_unroll2_gpu_std(int threads, uint64_t* amg, uint64_t* bmg, uint64_t *wg) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
if (thread < threads) |
|
{ |
|
uint64_t * am = amg + 8*thread; |
|
uint64_t * bm = bmg + 38*thread; |
|
uint64_t * w = wg + 38*thread; |
|
|
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll |
|
#endif |
|
for (int i=0;i<38;i++) { |
|
w[i]=0; |
|
} |
|
|
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll |
|
#endif |
|
for (int i=0;i<35;i++) |
|
{ |
|
uint64_t c=0; |
|
uint64_t u=0,v=0; |
|
#if __CUDA_ARCH__ < 500 |
|
#pragma unroll |
|
#endif |
|
for (int j=0;j<3;j++) { |
|
muladd128(u,v,am[j],bm[i],w[(i+j)],c); |
|
w[(i+j)]=v; |
|
c=u; |
|
} |
|
w[(i+3)]=u; |
|
} |
|
} // thread |
|
} |
|
|
|
__host__ void m7_bigmul1_cpu(int thr_id, int threads,int len1,int len2,uint64_t* Hash1, uint64_t* Hash2,uint64_t *finalHash,int order) |
|
{ |
|
const int threadsperblock = 256; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size =0; |
|
m7_bigmul1_gpu<<<grid, block, shared_size>>>(threads,len1,len2,Hash1,Hash2,finalHash); |
|
|
|
// MyStreamSynchronize(NULL, order, thr_id); |
|
|
|
// gpuErrchk(cudaDeviceSynchronize()); |
|
// gpuErrchk(cudaThreadSynchronize()); |
|
} |
|
|
|
__host__ void m7_bigmul_unroll1_cpu(int thr_id, int threads,uint64_t* Hash1, uint64_t* Hash2,uint64_t *finalHash,int order) |
|
{ |
|
const int threadsperblock = 256; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size =0; |
|
m7_bigmul_unroll1_gpu<<<grid, block, shared_size>>>(threads,Hash1,Hash2,finalHash); |
|
} |
|
|
|
__host__ void m7_bigmul_unroll2_cpu(int thr_id, int threads,uint64_t* Hash1, uint64_t* Hash2,uint64_t *finalHash,int order) |
|
{ |
|
const int threadsperblock = 256; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size =0; |
|
m7_bigmul_unroll2_gpu<<<grid, block, shared_size>>>(threads,Hash1,Hash2,finalHash); |
|
} |
|
|
|
__host__ void m7_bigmul_init(int thr_id, int threads) |
|
{ |
|
// why I am here ? |
|
}
|
|
|