fc84c719e9
based on the new djm34 method, 2x faster than first version cleaned and tuned for the GTX 750/960 (linux / cuda 6.5)
261 lines
6.8 KiB
Plaintext
261 lines
6.8 KiB
Plaintext
/**
|
|
* Lyra2 (v1) cuda implementation based on djm34 work - SM 5/5.2
|
|
* tpruvot@github 2015
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <memory.h>
|
|
|
|
#include "cuda_lyra2_vectors.h"
|
|
|
|
#define TPB50 16
|
|
#define TPB52 8
|
|
|
|
#define uint2x4 uint28
|
|
#define memshift 3
|
|
|
|
#define Ncol 8
|
|
#define NcolMask 0x7
|
|
|
|
__device__ uint2x4* DMatrix;
|
|
|
|
static __device__ __forceinline__
|
|
void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
|
|
{
|
|
a += b; d ^= a; d = SWAPUINT2(d);
|
|
c += d; b ^= c; b = ROR2(b, 24);
|
|
a += b; d ^= a; d = ROR2(d, 16);
|
|
c += d; b ^= c; b = ROR2(b, 63);
|
|
}
|
|
|
|
static __device__ __forceinline__
|
|
void round_lyra(uint2x4* s)
|
|
{
|
|
Gfunc(s[0].x, s[1].x, s[2].x, s[3].x);
|
|
Gfunc(s[0].y, s[1].y, s[2].y, s[3].y);
|
|
Gfunc(s[0].z, s[1].z, s[2].z, s[3].z);
|
|
Gfunc(s[0].w, s[1].w, s[2].w, s[3].w);
|
|
Gfunc(s[0].x, s[1].y, s[2].z, s[3].w);
|
|
Gfunc(s[0].y, s[1].z, s[2].w, s[3].x);
|
|
Gfunc(s[0].z, s[1].w, s[2].x, s[3].y);
|
|
Gfunc(s[0].w, s[1].x, s[2].y, s[3].z);
|
|
}
|
|
|
|
static __device__ __forceinline__
|
|
void reduceDuplex(uint2x4 state[4], uint32_t thread)
|
|
{
|
|
uint2x4 state1[3];
|
|
|
|
const uint32_t ps1 = (256 * thread);
|
|
const uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread);
|
|
|
|
#pragma unroll 4
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
const uint32_t s1 = ps1 + i*memshift;
|
|
const uint32_t s2 = ps2 - i*memshift;
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
state1[j] = __ldg4(&(DMatrix+s1)[j]);
|
|
for (int j = 0; j < 3; j++)
|
|
state[j] ^= state1[j];
|
|
|
|
round_lyra(state);
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
state1[j] ^= state[j];
|
|
for (int j = 0; j < 3; j++)
|
|
(DMatrix + s2)[j] = state1[j];
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__
|
|
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2x4 state[4], uint32_t thread)
|
|
{
|
|
uint2x4 state1[3], state2[3];
|
|
|
|
const uint32_t ps1 = ( memshift*8 * rowIn + 256 * thread);
|
|
const uint32_t ps2 = ( memshift*8 * rowInOut + 256 * thread);
|
|
const uint32_t ps3 = (memshift*7 + memshift*8 * rowOut + 256 * thread);
|
|
|
|
#pragma unroll 1
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
const uint32_t s1 = ps1 + i*memshift;
|
|
const uint32_t s2 = ps2 + i*memshift;
|
|
for (int j = 0; j < 3; j++)
|
|
state1[j]= __ldg4(&(DMatrix + s1)[j]);
|
|
for (int j = 0; j < 3; j++)
|
|
state2[j]= __ldg4(&(DMatrix + s2)[j]);
|
|
for (int j = 0; j < 3; j++) {
|
|
uint2x4 tmp = state1[j] + state2[j];
|
|
state[j] ^= tmp;
|
|
}
|
|
|
|
round_lyra(state);
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
const uint32_t s3 = ps3 - i*memshift;
|
|
state1[j] ^= state[j];
|
|
(DMatrix + s3)[j] = state1[j];
|
|
}
|
|
|
|
((uint2*)state2)[0] ^= ((uint2*)state)[11];
|
|
|
|
for (int j = 0; j < 11; j++)
|
|
((uint2*)state2)[j+1] ^= ((uint2*)state)[j];
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
(DMatrix + s2)[j] = state2[j];
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__
|
|
void reduceDuplexRowt(const int rowIn, const int rowInOut, const int rowOut, uint2x4* state, const uint32_t thread)
|
|
{
|
|
const uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread);
|
|
const uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread);
|
|
const uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread);
|
|
|
|
#pragma unroll 1
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
uint2x4 state1[3], state2[3];
|
|
|
|
const uint32_t s1 = ps1 + i*memshift;
|
|
const uint32_t s2 = ps2 + i*memshift;
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
state1[j] = __ldg4(&(DMatrix + s1)[j]);
|
|
state2[j] = __ldg4(&(DMatrix + s2)[j]);
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < 3; j++) {
|
|
state1[j] += state2[j];
|
|
state[j] ^= state1[j];
|
|
}
|
|
|
|
round_lyra(state);
|
|
|
|
((uint2*)state2)[0] ^= ((uint2*)state)[11];
|
|
|
|
for (int j = 0; j < 11; j++)
|
|
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
|
|
|
|
if (rowInOut == rowOut) {
|
|
for (int j = 0; j < 3; j++) {
|
|
state2[j] ^= state[j];
|
|
(DMatrix + s2)[j]=state2[j];
|
|
}
|
|
} else {
|
|
const uint32_t s3 = ps3 + i*memshift;
|
|
for (int j = 0; j < 3; j++) {
|
|
(DMatrix + s2)[j] = state2[j];
|
|
(DMatrix + s3)[j] ^= state[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if __CUDA_ARCH__ == 500
|
|
__global__ __launch_bounds__(TPB50, 1)
|
|
#else
|
|
__global__ __launch_bounds__(TPB52, 2)
|
|
#endif
|
|
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *g_hash)
|
|
{
|
|
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
|
|
|
const uint2x4 blake2b_IV[2] = {
|
|
{{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }},
|
|
{{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }}
|
|
};
|
|
|
|
if (thread < threads)
|
|
{
|
|
uint2x4 state[4];
|
|
|
|
((uint2*)state)[0] = __ldg(&g_hash[thread]);
|
|
((uint2*)state)[1] = __ldg(&g_hash[thread + threads]);
|
|
((uint2*)state)[2] = __ldg(&g_hash[thread + threads*2]);
|
|
((uint2*)state)[3] = __ldg(&g_hash[thread + threads*3]);
|
|
|
|
state[1] = state[0];
|
|
state[2] = blake2b_IV[0];
|
|
state[3] = blake2b_IV[1];
|
|
|
|
for (int i = 0; i<24; i++)
|
|
round_lyra(state); //because 12 is not enough
|
|
|
|
const uint32_t ps1 = (memshift * 7 + 256 * thread);
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
const uint32_t s1 = ps1 - memshift * i;
|
|
for (int j = 0; j < 3; j++)
|
|
(DMatrix + s1)[j] = (state)[j];
|
|
round_lyra(state);
|
|
}
|
|
|
|
reduceDuplex(state, thread);
|
|
|
|
reduceDuplexRowSetup(1, 0, 2, state, thread);
|
|
reduceDuplexRowSetup(2, 1, 3, state, thread);
|
|
reduceDuplexRowSetup(3, 0, 4, state, thread);
|
|
reduceDuplexRowSetup(4, 3, 5, state, thread);
|
|
reduceDuplexRowSetup(5, 2, 6, state, thread);
|
|
reduceDuplexRowSetup(6, 1, 7, state, thread);
|
|
|
|
uint32_t rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(7, rowa, 0, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(0, rowa, 3, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(3, rowa, 6, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(6, rowa, 1, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(1, rowa, 4, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(4, rowa, 7, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(7, rowa, 2, state, thread);
|
|
rowa = state[0].x.x & 7;
|
|
reduceDuplexRowt(2, rowa, 5, state, thread);
|
|
|
|
const int32_t shift = (memshift * 8 * rowa + 256 * thread);
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < 3; j++)
|
|
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
|
|
|
|
for (int i = 0; i < 12; i++)
|
|
round_lyra(state);
|
|
|
|
g_hash[thread] = ((uint2*)state)[0];
|
|
g_hash[thread + threads] = ((uint2*)state)[1];
|
|
g_hash[thread + threads*2] = ((uint2*)state)[2];
|
|
g_hash[thread + threads*3] = ((uint2*)state)[3];
|
|
}
|
|
}
|
|
|
|
__host__
|
|
void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix)
|
|
{
|
|
cuda_get_arch(thr_id);
|
|
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice);
|
|
}
|
|
|
|
__host__
|
|
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order)
|
|
{
|
|
int dev_id = device_map[thr_id % MAX_GPUS];
|
|
uint32_t tpb = TPB52;
|
|
if (device_sm[dev_id] == 500) tpb = TPB50;
|
|
|
|
dim3 grid((threads + tpb - 1) / tpb);
|
|
dim3 block(tpb);
|
|
|
|
lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_hash);
|
|
}
|