You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
643 lines
16 KiB
643 lines
16 KiB
/* |
|
* luffa_for_32.c |
|
* Version 2.0 (Sep 15th 2009) |
|
* |
|
* Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved. |
|
* |
|
* Hitachi, Ltd. is the owner of this software and hereby grant |
|
* the U.S. Government and any interested party the right to use |
|
* this software for the purposes of the SHA-3 evaluation process, |
|
* notwithstanding that this software is copyrighted. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
|
*/ |
|
|
|
#include "cuda_helper.h" |
|
|
|
typedef unsigned char BitSequence; |
|
|
|
typedef struct { |
|
uint32_t buffer[8]; /* Buffer to be hashed */ |
|
uint32_t chainv[40]; /* Chaining values */ |
|
} hashState; |
|
|
|
#define MULT2(a,j)\ |
|
tmp = a[7+(8*j)];\ |
|
a[7+(8*j)] = a[6+(8*j)];\ |
|
a[6+(8*j)] = a[5+(8*j)];\ |
|
a[5+(8*j)] = a[4+(8*j)];\ |
|
a[4+(8*j)] = a[3+(8*j)] ^ tmp;\ |
|
a[3+(8*j)] = a[2+(8*j)] ^ tmp;\ |
|
a[2+(8*j)] = a[1+(8*j)];\ |
|
a[1+(8*j)] = a[0+(8*j)] ^ tmp;\ |
|
a[0+(8*j)] = tmp; |
|
|
|
#if __CUDA_ARCH__ < 350 |
|
#define LROT(x,bits) ((x << bits) | (x >> (32 - bits))) |
|
#else |
|
#define LROT(x, bits) __funnelshift_l(x, x, bits) |
|
#endif |
|
|
|
#define TWEAK(a0,a1,a2,a3,j)\ |
|
a0 = LROT(a0,j);\ |
|
a1 = LROT(a1,j);\ |
|
a2 = LROT(a2,j);\ |
|
a3 = LROT(a3,j); |
|
|
|
#define STEP(c0,c1)\ |
|
SUBCRUMB(chainv[0],chainv[1],chainv[2],chainv[3],tmp);\ |
|
SUBCRUMB(chainv[5],chainv[6],chainv[7],chainv[4],tmp);\ |
|
MIXWORD(chainv[0],chainv[4]);\ |
|
MIXWORD(chainv[1],chainv[5]);\ |
|
MIXWORD(chainv[2],chainv[6]);\ |
|
MIXWORD(chainv[3],chainv[7]);\ |
|
ADD_CONSTANT(chainv[0],chainv[4],c0,c1); |
|
|
|
#define SUBCRUMB(a0,a1,a2,a3,a4)\ |
|
a4 = a0;\ |
|
a0 |= a1;\ |
|
a2 ^= a3;\ |
|
a1 = ~a1;\ |
|
a0 ^= a3;\ |
|
a3 &= a4;\ |
|
a1 ^= a3;\ |
|
a3 ^= a2;\ |
|
a2 &= a0;\ |
|
a0 = ~a0;\ |
|
a2 ^= a1;\ |
|
a1 |= a3;\ |
|
a4 ^= a1;\ |
|
a3 ^= a2;\ |
|
a2 &= a1;\ |
|
a1 ^= a0;\ |
|
a0 = a4; |
|
|
|
#define MIXWORD(a0,a4)\ |
|
a4 ^= a0;\ |
|
a0 = LROT(a0,2);\ |
|
a0 ^= a4;\ |
|
a4 = LROT(a4,14);\ |
|
a4 ^= a0;\ |
|
a0 = LROT(a0,10);\ |
|
a0 ^= a4;\ |
|
a4 = LROT(a4,1); |
|
|
|
#define ADD_CONSTANT(a0,b0,c0,c1)\ |
|
a0 ^= c0;\ |
|
b0 ^= c1; |
|
|
|
/* initial values of chaining variables */ |
|
__device__ __constant__ uint32_t c_IV[40]; |
|
const uint32_t h_IV[40] = { |
|
0x6d251e69,0x44b051e0,0x4eaa6fb4,0xdbf78465, |
|
0x6e292011,0x90152df4,0xee058139,0xdef610bb, |
|
0xc3b44b95,0xd9d2f256,0x70eee9a0,0xde099fa3, |
|
0x5d9b0557,0x8fc944b3,0xcf1ccf0e,0x746cd581, |
|
0xf7efc89d,0x5dba5781,0x04016ce5,0xad659c05, |
|
0x0306194f,0x666d1836,0x24aa230a,0x8b264ae7, |
|
0x858075d5,0x36d79cce,0xe571f7d7,0x204b1f67, |
|
0x35870c6a,0x57e9e923,0x14bcb808,0x7cde72ce, |
|
0x6c68e9be,0x5ec41e22,0xc825b7c7,0xaffb4363, |
|
0xf5df3999,0x0fc688f1,0xb07224cc,0x03e86cea}; |
|
|
|
__device__ __constant__ uint32_t c_CNS[80]; |
|
const uint32_t h_CNS[80] = { |
|
0x303994a6,0xe0337818,0xc0e65299,0x441ba90d, |
|
0x6cc33a12,0x7f34d442,0xdc56983e,0x9389217f, |
|
0x1e00108f,0xe5a8bce6,0x7800423d,0x5274baf4, |
|
0x8f5b7882,0x26889ba7,0x96e1db12,0x9a226e9d, |
|
0xb6de10ed,0x01685f3d,0x70f47aae,0x05a17cf4, |
|
0x0707a3d4,0xbd09caca,0x1c1e8f51,0xf4272b28, |
|
0x707a3d45,0x144ae5cc,0xaeb28562,0xfaa7ae2b, |
|
0xbaca1589,0x2e48f1c1,0x40a46f3e,0xb923c704, |
|
0xfc20d9d2,0xe25e72c1,0x34552e25,0xe623bb72, |
|
0x7ad8818f,0x5c58a4a4,0x8438764a,0x1e38e2e7, |
|
0xbb6de032,0x78e38b9d,0xedb780c8,0x27586719, |
|
0xd9847356,0x36eda57f,0xa2c78434,0x703aace7, |
|
0xb213afa5,0xe028c9bf,0xc84ebe95,0x44756f91, |
|
0x4e608a22,0x7e8fce32,0x56d858fe,0x956548be, |
|
0x343b138f,0xfe191be2,0xd0ec4e3d,0x3cb226e5, |
|
0x2ceb4882,0x5944a28e,0xb3ad2208,0xa1c4c355, |
|
0xf0d2e9e3,0x5090d577,0xac11d7fa,0x2d1925ab, |
|
0x1bcb66f2,0xb46496ac,0x6f2d9bc9,0xd1925ab0, |
|
0x78602649,0x29131ab6,0x8edae952,0x0fc053c3, |
|
0x3b6ba548,0x3f014f0c,0xedae9520,0xfc053c31}; |
|
|
|
|
|
/***************************************************/ |
|
__device__ __forceinline__ |
|
void rnd512(hashState *state) |
|
{ |
|
int i,j; |
|
uint32_t t[40]; |
|
uint32_t chainv[8]; |
|
uint32_t tmp; |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
t[i]=0; |
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
t[i] ^= state->chainv[i+8*j]; |
|
} |
|
} |
|
|
|
MULT2(t, 0); |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i+8*j] ^= t[i]; |
|
} |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
t[i+8*j] = state->chainv[i+8*j]; |
|
} |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
MULT2(state->chainv, j); |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[8*j+i] ^= t[8*((j+1)%5)+i]; |
|
} |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
t[i+8*j] = state->chainv[i+8*j]; |
|
} |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
MULT2(state->chainv, j); |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[8*j+i] ^= t[8*((j+4)%5)+i]; |
|
} |
|
} |
|
|
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i+8*j] ^= state->buffer[i]; |
|
} |
|
MULT2(state->buffer, 0); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
chainv[i] = state->chainv[i]; |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
STEP(c_CNS[(2*i)],c_CNS[(2*i)+1]); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i] = chainv[i]; |
|
chainv[i] = state->chainv[i+8]; |
|
} |
|
|
|
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],1); |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
STEP(c_CNS[(2*i)+16],c_CNS[(2*i)+16+1]); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i+8] = chainv[i]; |
|
chainv[i] = state->chainv[i+16]; |
|
} |
|
|
|
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],2); |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
STEP(c_CNS[(2*i)+32],c_CNS[(2*i)+32+1]); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i+16] = chainv[i]; |
|
chainv[i] = state->chainv[i+24]; |
|
} |
|
|
|
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],3); |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
STEP(c_CNS[(2*i)+48],c_CNS[(2*i)+48+1]); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i+24] = chainv[i]; |
|
chainv[i] = state->chainv[i+32]; |
|
} |
|
|
|
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],4); |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
STEP(c_CNS[(2*i)+64],c_CNS[(2*i)+64+1]); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
state->chainv[i+32] = chainv[i]; |
|
} |
|
} |
|
|
|
|
|
__device__ __forceinline__ |
|
void Update512(hashState *state, const BitSequence *data) |
|
{ |
|
#pragma unroll 8 |
|
for(int i=0;i<8;i++) state->buffer[i] = cuda_swab32(((uint32_t*)data)[i]); |
|
rnd512(state); |
|
|
|
#pragma unroll 8 |
|
for(int i=0;i<8;i++) state->buffer[i] = cuda_swab32(((uint32_t*)(data+32))[i]); |
|
rnd512(state); |
|
} |
|
|
|
|
|
/***************************************************/ |
|
__device__ __forceinline__ |
|
void finalization512(hashState *state, uint32_t *b) |
|
{ |
|
int i,j; |
|
|
|
state->buffer[0] = 0x80000000; |
|
#pragma unroll 7 |
|
for(int i=1;i<8;i++) state->buffer[i] = 0; |
|
rnd512(state); |
|
|
|
/*---- blank round with m=0 ----*/ |
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) state->buffer[i] =0; |
|
rnd512(state); |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
b[i] = 0; |
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
b[i] ^= state->chainv[i+8*j]; |
|
} |
|
b[i] = cuda_swab32((b[i])); |
|
} |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) state->buffer[i]=0; |
|
rnd512(state); |
|
|
|
#pragma unroll 8 |
|
for(i=0;i<8;i++) { |
|
b[8+i] = 0; |
|
#pragma unroll 5 |
|
for(j=0;j<5;j++) { |
|
b[8+i] ^= state->chainv[i+8*j]; |
|
} |
|
b[8 + i] = cuda_swab32((b[8 + i])); |
|
} |
|
} |
|
|
|
typedef unsigned char BitSequence; |
|
|
|
#define CUBEHASH_ROUNDS 16 /* this is r for CubeHashr/b */ |
|
#define CUBEHASH_BLOCKBYTES 32 /* this is b for CubeHashr/b */ |
|
|
|
#if __CUDA_ARCH__ < 350 |
|
#define LROT(x,bits) ((x << bits) | (x >> (32 - bits))) |
|
#else |
|
#define LROT(x, bits) __funnelshift_l(x, x, bits) |
|
#endif |
|
|
|
#define ROTATEUPWARDS7(a) LROT(a,7) |
|
#define ROTATEUPWARDS11(a) LROT(a,11) |
|
|
|
#define SWAP(a,b) { uint32_t u = a; a = b; b = u; } |
|
|
|
__device__ __constant__ |
|
static const uint32_t c_IV_512[32] = { |
|
0x2AEA2A61, 0x50F494D4, 0x2D538B8B, |
|
0x4167D83E, 0x3FEE2313, 0xC701CF8C, |
|
0xCC39968E, 0x50AC5695, 0x4D42C787, |
|
0xA647A8B3, 0x97CF0BEF, 0x825B4537, |
|
0xEEF864D2, 0xF22090C4, 0xD0E5CD33, |
|
0xA23911AE, 0xFCD398D9, 0x148FE485, |
|
0x1B017BEF, 0xB6444532, 0x6A536159, |
|
0x2FF5781C, 0x91FA7934, 0x0DBADEA9, |
|
0xD65C8A2B, 0xA5A70E75, 0xB1C62456, |
|
0xBC796576, 0x1921C8F7, 0xE7989AF1, |
|
0x7795D246, 0xD43E3B44 |
|
}; |
|
|
|
static __device__ __forceinline__ void rrounds(uint32_t x[2][2][2][2][2]) |
|
{ |
|
int r; |
|
int j; |
|
int k; |
|
int l; |
|
int m; |
|
|
|
//#pragma unroll 16 |
|
for (r = 0; r < CUBEHASH_ROUNDS; ++r) { |
|
|
|
/* "add x_0jklm into x_1jklmn modulo 2^32" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[1][j][k][l][m] += x[0][j][k][l][m]; |
|
|
|
/* "rotate x_0jklm upwards by 7 bits" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[0][j][k][l][m] = ROTATEUPWARDS7(x[0][j][k][l][m]); |
|
|
|
/* "swap x_00klm with x_01klm" */ |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
SWAP(x[0][0][k][l][m], x[0][1][k][l][m]) |
|
|
|
/* "xor x_1jklm into x_0jklm" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[0][j][k][l][m] ^= x[1][j][k][l][m]; |
|
|
|
/* "swap x_1jk0m with x_1jk1m" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
SWAP(x[1][j][k][0][m], x[1][j][k][1][m]) |
|
|
|
/* "add x_0jklm into x_1jklm modulo 2^32" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[1][j][k][l][m] += x[0][j][k][l][m]; |
|
|
|
/* "rotate x_0jklm upwards by 11 bits" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[0][j][k][l][m] = ROTATEUPWARDS11(x[0][j][k][l][m]); |
|
|
|
/* "swap x_0j0lm with x_0j1lm" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
SWAP(x[0][j][0][l][m], x[0][j][1][l][m]) |
|
|
|
/* "xor x_1jklm into x_0jklm" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[0][j][k][l][m] ^= x[1][j][k][l][m]; |
|
|
|
/* "swap x_1jkl0 with x_1jkl1" */ |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
SWAP(x[1][j][k][l][0], x[1][j][k][l][1]) |
|
|
|
} |
|
} |
|
|
|
|
|
static __device__ __forceinline__ void block_tox(uint32_t *in, uint32_t x[2][2][2][2][2]) |
|
{ |
|
int k; |
|
int l; |
|
int m; |
|
// uint32_t *in = block; |
|
|
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[0][0][k][l][m] ^= *in++; |
|
} |
|
|
|
static __device__ __forceinline__ void hash_fromx(uint32_t *out, uint32_t x[2][2][2][2][2]) |
|
{ |
|
int j; |
|
int k; |
|
int l; |
|
int m; |
|
// uint32_t *out = hash; |
|
|
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
*out++ = x[0][j][k][l][m]; |
|
} |
|
|
|
void __device__ __forceinline__ Init(uint32_t x[2][2][2][2][2]) |
|
{ |
|
int i, j, k, l, m; |
|
#if 0 |
|
/* "the first three state words x_00000, x_00001, x_00010" */ |
|
/* "are set to the integers h/8, b, r respectively." */ |
|
/* "the remaining state words are set to 0." */ |
|
#pragma unroll 2 |
|
for (i = 0; i < 2; ++i) |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[i][j][k][l][m] = 0; |
|
x[0][0][0][0][0] = 512 / 8; |
|
x[0][0][0][0][1] = CUBEHASH_BLOCKBYTES; |
|
x[0][0][0][1][0] = CUBEHASH_ROUNDS; |
|
|
|
/* "the state is then transformed invertibly through 10r identical rounds */ |
|
for (i = 0; i < 10; ++i) rrounds(x); |
|
#else |
|
const uint32_t *iv = c_IV_512; |
|
|
|
#pragma unroll 2 |
|
for (i = 0; i < 2; ++i) |
|
#pragma unroll 2 |
|
for (j = 0; j < 2; ++j) |
|
#pragma unroll 2 |
|
for (k = 0; k < 2; ++k) |
|
#pragma unroll 2 |
|
for (l = 0; l < 2; ++l) |
|
#pragma unroll 2 |
|
for (m = 0; m < 2; ++m) |
|
x[i][j][k][l][m] = *iv++; |
|
#endif |
|
} |
|
|
|
void __device__ __forceinline__ Update32(uint32_t x[2][2][2][2][2], const BitSequence *data) |
|
{ |
|
/* "xor the block into the first b bytes of the state" */ |
|
/* "and then transform the state invertibly through r identical rounds" */ |
|
block_tox((uint32_t*)data, x); |
|
rrounds(x); |
|
} |
|
|
|
void __device__ __forceinline__ Final(uint32_t x[2][2][2][2][2], BitSequence *hashval) |
|
{ |
|
int i; |
|
|
|
/* "the integer 1 is xored into the last state word x_11111" */ |
|
x[1][1][1][1][1] ^= 1; |
|
|
|
/* "the state is then transformed invertibly through 10r identical rounds" */ |
|
#pragma unroll 10 |
|
for (i = 0; i < 10; ++i) rrounds(x); |
|
|
|
/* "output the first h/8 bytes of the state" */ |
|
hash_fromx((uint32_t*)hashval, x); |
|
} |
|
|
|
|
|
/***************************************************/ |
|
// Die Hash-Funktion |
|
__global__ |
|
void x11_luffaCubehash512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
|
|
|
int hashPosition = nounce - startNounce; |
|
uint32_t *Hash = (uint32_t*)&g_hash[8 * hashPosition]; |
|
|
|
hashState state; |
|
#pragma unroll 40 |
|
for(int i=0;i<40;i++) state.chainv[i] = c_IV[i]; |
|
#pragma unroll 8 |
|
for(int i=0;i<8;i++) state.buffer[i] = 0; |
|
Update512(&state, (BitSequence*)Hash); |
|
finalization512(&state, (uint32_t*)Hash); |
|
//Cubehash |
|
|
|
uint32_t x[2][2][2][2][2]; |
|
Init(x); |
|
// erste Hälfte des Hashes (32 bytes) |
|
Update32(x, (const BitSequence*)Hash); |
|
// zweite Hälfte des Hashes (32 bytes) |
|
Update32(x, (const BitSequence*)(Hash + 8)); |
|
// Padding Block |
|
uint32_t last[8]; |
|
last[0] = 0x80; |
|
#pragma unroll 7 |
|
for (int i = 1; i < 8; i++) last[i] = 0; |
|
Update32(x, (const BitSequence*)last); |
|
Final(x, (BitSequence*)Hash); |
|
} |
|
} |
|
|
|
|
|
// Setup-Funktionen |
|
__host__ void x11_luffaCubehash512_cpu_init(int thr_id, int threads) |
|
{ |
|
cudaMemcpyToSymbol(c_IV, h_IV, sizeof(h_IV), 0, cudaMemcpyHostToDevice); |
|
cudaMemcpyToSymbol(c_CNS, h_CNS, sizeof(h_CNS), 0, cudaMemcpyHostToDevice); |
|
} |
|
|
|
__host__ void x11_luffaCubehash512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
|
{ |
|
const int threadsperblock = 256; |
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
// Größe des dynamischen Shared Memory Bereichs |
|
size_t shared_size = 0; |
|
|
|
x11_luffaCubehash512_gpu_hash_64 << <grid, block, shared_size >> >(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
|
MyStreamSynchronize(NULL, order, thr_id); |
|
} |
|
|
|
|