You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
837 lines
23 KiB
837 lines
23 KiB
// |
|
// =============== KECCAK part on nVidia GPU ====================== |
|
// |
|
// The keccak512 (SHA-3) is used in the PBKDF2 for scrypt-jane coins |
|
// in place of the SHA2 based PBKDF2 used in scrypt coins. |
|
// |
|
// The keccak256 is used exclusively in Maxcoin and clones. This module |
|
// holds the generic "default" implementation when no architecture |
|
// specific implementation is available in the kernel. |
|
// |
|
// NOTE: compile this .cu module for compute_10,sm_10 with --maxrregcount=64 |
|
// |
|
|
|
#include <map> |
|
#include <stdint.h> |
|
|
|
#include "salsa_kernel.h" |
|
#include "cuda_runtime.h" |
|
#include "miner.h" |
|
|
|
#include "keccak.h" |
|
|
|
// define some error checking macros |
|
#undef checkCudaErrors |
|
|
|
#if WIN32 |
|
#define DELIMITER '/' |
|
#else |
|
#define DELIMITER '/' |
|
#endif |
|
#define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ ) |
|
|
|
#define checkCudaErrors(x) \ |
|
{ \ |
|
cudaGetLastError(); \ |
|
x; \ |
|
cudaError_t err = cudaGetLastError(); \ |
|
if (err != cudaSuccess) \ |
|
applog(LOG_ERR, "GPU #%d: cudaError %d (%s) calling '%s' (%s line %d)\n", device_map[thr_id], err, cudaGetErrorString(err), #x, __FILENAME__, __LINE__); \ |
|
} |
|
|
|
// from salsa_kernel.cu |
|
extern std::map<int, uint32_t *> context_idata[2]; |
|
extern std::map<int, uint32_t *> context_odata[2]; |
|
extern std::map<int, cudaStream_t> context_streams[2]; |
|
extern std::map<int, uint32_t *> context_hash[2]; |
|
|
|
#define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b))) |
|
|
|
// CB |
|
#define U32TO64_LE(p) \ |
|
(((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32)) |
|
|
|
#define U64TO32_LE(p, v) \ |
|
*p = (uint32_t)((v)); *(p+1) = (uint32_t)((v) >> 32); |
|
|
|
static __device__ void mycpy64(uint32_t *d, const uint32_t *s) { |
|
#pragma unroll 16 |
|
for (int k=0; k < 16; ++k) d[k] = s[k]; |
|
} |
|
|
|
static __device__ void mycpy56(uint32_t *d, const uint32_t *s) { |
|
#pragma unroll 14 |
|
for (int k=0; k < 14; ++k) d[k] = s[k]; |
|
} |
|
|
|
static __device__ void mycpy32(uint32_t *d, const uint32_t *s) { |
|
#pragma unroll 8 |
|
for (int k=0; k < 8; ++k) d[k] = s[k]; |
|
} |
|
|
|
static __device__ void mycpy8(uint32_t *d, const uint32_t *s) { |
|
#pragma unroll 2 |
|
for (int k=0; k < 2; ++k) d[k] = s[k]; |
|
} |
|
|
|
static __device__ void mycpy4(uint32_t *d, const uint32_t *s) { |
|
*d = *s; |
|
} |
|
|
|
// ---------------------------- BEGIN keccak functions ------------------------------------ |
|
|
|
#define KECCAK_HASH "Keccak-512" |
|
|
|
typedef struct keccak_hash_state_t { |
|
uint64_t state[25]; // 25*2 |
|
uint32_t buffer[72/4]; // 72 |
|
} keccak_hash_state; |
|
|
|
__device__ void statecopy0(keccak_hash_state *d, keccak_hash_state *s) |
|
{ |
|
#pragma unroll 25 |
|
for (int i=0; i < 25; ++i) |
|
d->state[i] = s->state[i]; |
|
} |
|
|
|
__device__ void statecopy8(keccak_hash_state *d, keccak_hash_state *s) |
|
{ |
|
#pragma unroll 25 |
|
for (int i=0; i < 25; ++i) |
|
d->state[i] = s->state[i]; |
|
#pragma unroll 2 |
|
for (int i=0; i < 2; ++i) |
|
d->buffer[i] = s->buffer[i]; |
|
} |
|
|
|
static const uint64_t host_keccak_round_constants[24] = { |
|
0x0000000000000001ull, 0x0000000000008082ull, |
|
0x800000000000808aull, 0x8000000080008000ull, |
|
0x000000000000808bull, 0x0000000080000001ull, |
|
0x8000000080008081ull, 0x8000000000008009ull, |
|
0x000000000000008aull, 0x0000000000000088ull, |
|
0x0000000080008009ull, 0x000000008000000aull, |
|
0x000000008000808bull, 0x800000000000008bull, |
|
0x8000000000008089ull, 0x8000000000008003ull, |
|
0x8000000000008002ull, 0x8000000000000080ull, |
|
0x000000000000800aull, 0x800000008000000aull, |
|
0x8000000080008081ull, 0x8000000000008080ull, |
|
0x0000000080000001ull, 0x8000000080008008ull |
|
}; |
|
|
|
__constant__ uint64_t c_keccak_round_constants[24]; |
|
__constant__ uint32_t pdata[20]; |
|
|
|
__device__ |
|
void keccak_block(keccak_hash_state *S, const uint32_t *in) { |
|
size_t i; |
|
uint64_t *s = S->state, t[5], u[5], v, w; |
|
|
|
/* absorb input */ |
|
#pragma unroll 9 |
|
for (i = 0; i < 72 / 8; i++, in += 2) |
|
s[i] ^= U32TO64_LE(in); |
|
|
|
for (i = 0; i < 24; i++) { |
|
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
|
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
|
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
|
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
|
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
|
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
|
|
|
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
|
u[0] = t[4] ^ ROTL64(t[1], 1); |
|
u[1] = t[0] ^ ROTL64(t[2], 1); |
|
u[2] = t[1] ^ ROTL64(t[3], 1); |
|
u[3] = t[2] ^ ROTL64(t[4], 1); |
|
u[4] = t[3] ^ ROTL64(t[0], 1); |
|
|
|
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
|
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
|
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
|
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
|
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
|
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
|
|
|
/* rho pi: b[..] = rotl(a[..], ..) */ |
|
v = s[ 1]; |
|
s[ 1] = ROTL64(s[ 6], 44); |
|
s[ 6] = ROTL64(s[ 9], 20); |
|
s[ 9] = ROTL64(s[22], 61); |
|
s[22] = ROTL64(s[14], 39); |
|
s[14] = ROTL64(s[20], 18); |
|
s[20] = ROTL64(s[ 2], 62); |
|
s[ 2] = ROTL64(s[12], 43); |
|
s[12] = ROTL64(s[13], 25); |
|
s[13] = ROTL64(s[19], 8); |
|
s[19] = ROTL64(s[23], 56); |
|
s[23] = ROTL64(s[15], 41); |
|
s[15] = ROTL64(s[ 4], 27); |
|
s[ 4] = ROTL64(s[24], 14); |
|
s[24] = ROTL64(s[21], 2); |
|
s[21] = ROTL64(s[ 8], 55); |
|
s[ 8] = ROTL64(s[16], 45); |
|
s[16] = ROTL64(s[ 5], 36); |
|
s[ 5] = ROTL64(s[ 3], 28); |
|
s[ 3] = ROTL64(s[18], 21); |
|
s[18] = ROTL64(s[17], 15); |
|
s[17] = ROTL64(s[11], 10); |
|
s[11] = ROTL64(s[ 7], 6); |
|
s[ 7] = ROTL64(s[10], 3); |
|
s[10] = ROTL64( v, 1); |
|
|
|
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
|
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; |
|
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; |
|
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
|
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
|
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
|
|
|
/* iota: a[0,0] ^= round constant */ |
|
s[0] ^= c_keccak_round_constants[i]; |
|
} |
|
} |
|
|
|
__device__ |
|
void keccak_hash_init(keccak_hash_state *S) { |
|
#pragma unroll 25 |
|
for (int i=0; i<25; ++i) |
|
S->state[i] = 0ULL; |
|
} |
|
|
|
// assuming there is no leftover data and exactly 72 bytes are incoming |
|
// we can directly call into the block hashing function |
|
__device__ void keccak_hash_update72(keccak_hash_state *S, const uint32_t *in) { |
|
keccak_block(S, in); |
|
} |
|
|
|
__device__ void keccak_hash_update8(keccak_hash_state *S, const uint32_t *in) { |
|
mycpy8(S->buffer, in); |
|
} |
|
|
|
__device__ void keccak_hash_update4_8(keccak_hash_state *S, const uint32_t *in) { |
|
mycpy4(S->buffer+8/4, in); |
|
} |
|
|
|
__device__ void keccak_hash_update4_56(keccak_hash_state *S, const uint32_t *in) { |
|
mycpy4(S->buffer+56/4, in); |
|
} |
|
|
|
__device__ void keccak_hash_update56(keccak_hash_state *S, const uint32_t *in) { |
|
mycpy56(S->buffer, in); |
|
} |
|
|
|
__device__ void keccak_hash_update64(keccak_hash_state *S, const uint32_t *in) { |
|
mycpy64(S->buffer, in); |
|
} |
|
|
|
__device__ void keccak_hash_finish8(keccak_hash_state *S, uint32_t *hash) { |
|
S->buffer[8/4] = 0x01; |
|
#pragma unroll 15 |
|
for (int i=8/4+1; i < 72/4; ++i) S->buffer[i] = 0; |
|
S->buffer[72/4 - 1] |= 0x80000000; |
|
keccak_block(S, (const uint32_t*)S->buffer); |
|
#pragma unroll 8 |
|
for (size_t i = 0; i < 64; i += 8) { |
|
U64TO32_LE((&hash[i/4]), S->state[i / 8]); |
|
} |
|
} |
|
|
|
__device__ void keccak_hash_finish12(keccak_hash_state *S, uint32_t *hash) { |
|
S->buffer[12/4] = 0x01; |
|
#pragma unroll 14 |
|
for (int i=12/4+1; i < 72/4; ++i) S->buffer[i] = 0; |
|
S->buffer[72/4 - 1] |= 0x80000000; |
|
keccak_block(S, (const uint32_t*)S->buffer); |
|
#pragma unroll 8 |
|
for (size_t i = 0; i < 64; i += 8) { |
|
U64TO32_LE((&hash[i/4]), S->state[i / 8]); |
|
} |
|
} |
|
|
|
__device__ void keccak_hash_finish60(keccak_hash_state *S, uint32_t *hash) { |
|
S->buffer[60/4] = 0x01; |
|
#pragma unroll 2 |
|
for (int i=60/4+1; i < 72/4; ++i) S->buffer[i] = 0; |
|
S->buffer[72/4 - 1] |= 0x80000000; |
|
keccak_block(S, (const uint32_t*)S->buffer); |
|
#pragma unroll 8 |
|
for (size_t i = 0; i < 64; i += 8) { |
|
U64TO32_LE((&hash[i/4]), S->state[i / 8]); |
|
} |
|
} |
|
|
|
__device__ void keccak_hash_finish64(keccak_hash_state *S, uint32_t *hash) { |
|
S->buffer[64/4] = 0x01; |
|
#pragma unroll 1 |
|
for (int i=64/4+1; i < 72/4; ++i) S->buffer[i] = 0; |
|
S->buffer[72/4 - 1] |= 0x80000000; |
|
keccak_block(S, (const uint32_t*)S->buffer); |
|
#pragma unroll 8 |
|
for (size_t i = 0; i < 64; i += 8) { |
|
U64TO32_LE((&hash[i/4]), S->state[i / 8]); |
|
} |
|
} |
|
|
|
// ---------------------------- END keccak functions ------------------------------------ |
|
|
|
// ---------------------------- BEGIN PBKDF2 functions ------------------------------------ |
|
|
|
typedef struct pbkdf2_hmac_state_t { |
|
keccak_hash_state inner, outer; |
|
} pbkdf2_hmac_state; |
|
|
|
|
|
__device__ void pbkdf2_hash(uint32_t *hash, const uint32_t *m) { |
|
keccak_hash_state st; |
|
keccak_hash_init(&st); |
|
keccak_hash_update72(&st, m); |
|
keccak_hash_update8(&st, m+72/4); |
|
keccak_hash_finish8(&st, hash); |
|
} |
|
|
|
/* hmac */ |
|
__device__ void pbkdf2_hmac_init80(pbkdf2_hmac_state *st, const uint32_t *key) { |
|
uint32_t pad[72/4]; |
|
size_t i; |
|
|
|
keccak_hash_init(&st->inner); |
|
keccak_hash_init(&st->outer); |
|
|
|
#pragma unroll 18 |
|
for (i = 0; i < 72/4; i++) |
|
pad[i] = 0; |
|
|
|
/* key > blocksize bytes, hash it */ |
|
pbkdf2_hash(pad, key); |
|
|
|
/* inner = (key ^ 0x36) */ |
|
/* h(inner || ...) */ |
|
#pragma unroll 18 |
|
for (i = 0; i < 72/4; i++) |
|
pad[i] ^= 0x36363636; |
|
keccak_hash_update72(&st->inner, pad); |
|
|
|
/* outer = (key ^ 0x5c) */ |
|
/* h(outer || ...) */ |
|
#pragma unroll 18 |
|
for (i = 0; i < 72/4; i++) |
|
pad[i] ^= 0x6a6a6a6a; |
|
keccak_hash_update72(&st->outer, pad); |
|
} |
|
|
|
// assuming there is no leftover data and exactly 72 bytes are incoming |
|
// we can directly call into the block hashing function |
|
__device__ void pbkdf2_hmac_update72(pbkdf2_hmac_state *st, const uint32_t *m) { |
|
/* h(inner || m...) */ |
|
keccak_hash_update72(&st->inner, m); |
|
} |
|
|
|
__device__ void pbkdf2_hmac_update8(pbkdf2_hmac_state *st, const uint32_t *m) { |
|
/* h(inner || m...) */ |
|
keccak_hash_update8(&st->inner, m); |
|
} |
|
|
|
__device__ void pbkdf2_hmac_update4_8(pbkdf2_hmac_state *st, const uint32_t *m) { |
|
/* h(inner || m...) */ |
|
keccak_hash_update4_8(&st->inner, m); |
|
} |
|
|
|
__device__ void pbkdf2_hmac_update4_56(pbkdf2_hmac_state *st, const uint32_t *m) { |
|
/* h(inner || m...) */ |
|
keccak_hash_update4_56(&st->inner, m); |
|
} |
|
|
|
__device__ void pbkdf2_hmac_update56(pbkdf2_hmac_state *st, const uint32_t *m) { |
|
/* h(inner || m...) */ |
|
keccak_hash_update56(&st->inner, m); |
|
} |
|
|
|
__device__ void pbkdf2_hmac_finish12(pbkdf2_hmac_state *st, uint32_t *mac) { |
|
/* h(inner || m) */ |
|
uint32_t innerhash[16]; |
|
keccak_hash_finish12(&st->inner, innerhash); |
|
|
|
/* h(outer || h(inner || m)) */ |
|
keccak_hash_update64(&st->outer, innerhash); |
|
keccak_hash_finish64(&st->outer, mac); |
|
} |
|
|
|
__device__ void pbkdf2_hmac_finish60(pbkdf2_hmac_state *st, uint32_t *mac) { |
|
/* h(inner || m) */ |
|
uint32_t innerhash[16]; |
|
keccak_hash_finish60(&st->inner, innerhash); |
|
|
|
/* h(outer || h(inner || m)) */ |
|
keccak_hash_update64(&st->outer, innerhash); |
|
keccak_hash_finish64(&st->outer, mac); |
|
} |
|
|
|
__device__ void pbkdf2_statecopy8(pbkdf2_hmac_state *d, pbkdf2_hmac_state *s) { |
|
statecopy8(&d->inner, &s->inner); |
|
statecopy0(&d->outer, &s->outer); |
|
} |
|
|
|
// ---------------------------- END PBKDF2 functions ------------------------------------ |
|
|
|
static __device__ uint32_t cuda_swab32(uint32_t x) { |
|
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u) |
|
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu)); |
|
} |
|
|
|
__global__ __launch_bounds__(128) |
|
void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce) |
|
{ |
|
nonce += (blockIdx.x * blockDim.x) + threadIdx.x; |
|
g_idata += 32 * ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
|
|
uint32_t data[20]; |
|
|
|
#pragma unroll |
|
for (int i=0; i <19; ++i) |
|
data[i] = cuda_swab32(pdata[i]); |
|
data[19] = cuda_swab32(nonce); |
|
|
|
// scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)data, 80, (uint8_t*)g_idata, 128); |
|
|
|
pbkdf2_hmac_state hmac_pw, work; |
|
uint32_t ti[16]; |
|
uint32_t be; |
|
|
|
/* hmac(password, ...) */ |
|
pbkdf2_hmac_init80(&hmac_pw, data); |
|
|
|
/* hmac(password, salt...) */ |
|
pbkdf2_hmac_update72(&hmac_pw, data); |
|
pbkdf2_hmac_update8(&hmac_pw, data+72/4); |
|
|
|
/* U1 = hmac(password, salt || be(i)) */ |
|
be = cuda_swab32(1); |
|
pbkdf2_statecopy8(&work, &hmac_pw); |
|
pbkdf2_hmac_update4_8(&work, &be); |
|
pbkdf2_hmac_finish12(&work, ti); |
|
mycpy64(g_idata, ti); |
|
|
|
be = cuda_swab32(2); |
|
pbkdf2_statecopy8(&work, &hmac_pw); |
|
pbkdf2_hmac_update4_8(&work, &be); |
|
pbkdf2_hmac_finish12(&work, ti); |
|
mycpy64(g_idata+16, ti); |
|
} |
|
|
|
|
|
__global__ __launch_bounds__(128) |
|
void cuda_post_keccak512(uint32_t *g_odata, uint32_t *g_hash, uint32_t nonce) |
|
{ |
|
nonce += (blockIdx.x * blockDim.x) + threadIdx.x; |
|
g_odata += 32 * ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
g_hash += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
|
|
uint32_t data[20]; |
|
|
|
#pragma unroll 19 |
|
for (int i=0; i <19; ++i) |
|
data[i] = cuda_swab32(pdata[i]); |
|
data[19] = cuda_swab32(nonce); |
|
|
|
// scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)g_odata, 128, (uint8_t*)g_hash, 32); |
|
|
|
pbkdf2_hmac_state hmac_pw; |
|
uint32_t ti[16]; |
|
uint32_t be; |
|
|
|
/* hmac(password, ...) */ |
|
pbkdf2_hmac_init80(&hmac_pw, data); |
|
|
|
/* hmac(password, salt...) */ |
|
pbkdf2_hmac_update72(&hmac_pw, g_odata); |
|
pbkdf2_hmac_update56(&hmac_pw, g_odata+72/4); |
|
|
|
/* U1 = hmac(password, salt || be(i)) */ |
|
be = cuda_swab32(1); |
|
pbkdf2_hmac_update4_56(&hmac_pw, &be); |
|
pbkdf2_hmac_finish60(&hmac_pw, ti); |
|
mycpy32(g_hash, ti); |
|
} |
|
|
|
// |
|
// callable host code to initialize constants and to call kernels |
|
// |
|
|
|
extern "C" void prepare_keccak512(int thr_id, const uint32_t host_pdata[20]) |
|
{ |
|
static bool init[MAX_GPUS] = { 0 }; |
|
|
|
if (!init[thr_id]) |
|
{ |
|
checkCudaErrors(cudaMemcpyToSymbol(c_keccak_round_constants, host_keccak_round_constants, sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice)); |
|
init[thr_id] = true; |
|
} |
|
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); |
|
} |
|
|
|
extern "C" void pre_keccak512(int thr_id, int stream, uint32_t nonce, int throughput) |
|
{ |
|
dim3 block(128); |
|
dim3 grid((throughput+127)/128); |
|
|
|
cuda_pre_keccak512<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_idata[stream][thr_id], nonce); |
|
} |
|
|
|
extern "C" void post_keccak512(int thr_id, int stream, uint32_t nonce, int throughput) |
|
{ |
|
dim3 block(128); |
|
dim3 grid((throughput+127)/128); |
|
|
|
cuda_post_keccak512<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_odata[stream][thr_id], context_hash[stream][thr_id], nonce); |
|
} |
|
|
|
|
|
// |
|
// Maxcoin related Keccak implementation (Keccak256) |
|
// |
|
|
|
#include <stdint.h> |
|
|
|
#include <map> |
|
extern std::map<int, int> context_blocks; |
|
extern std::map<int, int> context_wpb; |
|
extern std::map<int, KernelInterface *> context_kernel; |
|
|
|
__constant__ uint64_t ptarget64[4]; |
|
|
|
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64)))) |
|
#define ROL_mult8(a, offset) ROL(a, offset) |
|
|
|
__constant__ uint64_t KeccakF_RoundConstants[24]; |
|
|
|
static uint64_t host_KeccakF_RoundConstants[24] = { |
|
(uint64_t)0x0000000000000001ULL, |
|
(uint64_t)0x0000000000008082ULL, |
|
(uint64_t)0x800000000000808aULL, |
|
(uint64_t)0x8000000080008000ULL, |
|
(uint64_t)0x000000000000808bULL, |
|
(uint64_t)0x0000000080000001ULL, |
|
(uint64_t)0x8000000080008081ULL, |
|
(uint64_t)0x8000000000008009ULL, |
|
(uint64_t)0x000000000000008aULL, |
|
(uint64_t)0x0000000000000088ULL, |
|
(uint64_t)0x0000000080008009ULL, |
|
(uint64_t)0x000000008000000aULL, |
|
(uint64_t)0x000000008000808bULL, |
|
(uint64_t)0x800000000000008bULL, |
|
(uint64_t)0x8000000000008089ULL, |
|
(uint64_t)0x8000000000008003ULL, |
|
(uint64_t)0x8000000000008002ULL, |
|
(uint64_t)0x8000000000000080ULL, |
|
(uint64_t)0x000000000000800aULL, |
|
(uint64_t)0x800000008000000aULL, |
|
(uint64_t)0x8000000080008081ULL, |
|
(uint64_t)0x8000000000008080ULL, |
|
(uint64_t)0x0000000080000001ULL, |
|
(uint64_t)0x8000000080008008ULL |
|
}; |
|
|
|
__constant__ uint64_t pdata64[10]; |
|
|
|
__global__ |
|
void crypto_hash(uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate) |
|
{ |
|
uint64_t Aba, Abe, Abi, Abo, Abu; |
|
uint64_t Aga, Age, Agi, Ago, Agu; |
|
uint64_t Aka, Ake, Aki, Ako, Aku; |
|
uint64_t Ama, Ame, Ami, Amo, Amu; |
|
uint64_t Asa, Ase, Asi, Aso, Asu; |
|
uint64_t BCa, BCe, BCi, BCo, BCu; |
|
uint64_t Da, De, Di, Do, Du; |
|
uint64_t Eba, Ebe, Ebi, Ebo, Ebu; |
|
uint64_t Ega, Ege, Egi, Ego, Egu; |
|
uint64_t Eka, Eke, Eki, Eko, Eku; |
|
uint64_t Ema, Eme, Emi, Emo, Emu; |
|
uint64_t Esa, Ese, Esi, Eso, Esu; |
|
|
|
//copyFromState(A, state) |
|
Aba = pdata64[0]; |
|
Abe = pdata64[1]; |
|
Abi = pdata64[2]; |
|
Abo = pdata64[3]; |
|
Abu = pdata64[4]; |
|
Aga = pdata64[5]; |
|
Age = pdata64[6]; |
|
Agi = pdata64[7]; |
|
Ago = pdata64[8]; |
|
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32); |
|
Aka = 0x0000000000000001ULL; |
|
Ake = 0; |
|
Aki = 0; |
|
Ako = 0; |
|
Aku = 0; |
|
Ama = 0; |
|
Ame = 0x8000000000000000ULL; |
|
Ami = 0; |
|
Amo = 0; |
|
Amu = 0; |
|
Asa = 0; |
|
Ase = 0; |
|
Asi = 0; |
|
Aso = 0; |
|
Asu = 0; |
|
|
|
#pragma unroll 12 |
|
for( int laneCount = 0; laneCount < 24; laneCount += 2 ) |
|
{ |
|
// prepareTheta |
|
BCa = Aba^Aga^Aka^Ama^Asa; |
|
BCe = Abe^Age^Ake^Ame^Ase; |
|
BCi = Abi^Agi^Aki^Ami^Asi; |
|
BCo = Abo^Ago^Ako^Amo^Aso; |
|
BCu = Abu^Agu^Aku^Amu^Asu; |
|
|
|
//thetaRhoPiChiIotaPrepareTheta(round , A, E) |
|
Da = BCu^ROL(BCe, 1); |
|
De = BCa^ROL(BCi, 1); |
|
Di = BCe^ROL(BCo, 1); |
|
Do = BCi^ROL(BCu, 1); |
|
Du = BCo^ROL(BCa, 1); |
|
|
|
Aba ^= Da; |
|
BCa = Aba; |
|
Age ^= De; |
|
BCe = ROL(Age, 44); |
|
Aki ^= Di; |
|
BCi = ROL(Aki, 43); |
|
Amo ^= Do; |
|
BCo = ROL(Amo, 21); |
|
Asu ^= Du; |
|
BCu = ROL(Asu, 14); |
|
Eba = BCa ^((~BCe)& BCi ); |
|
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount]; |
|
Ebe = BCe ^((~BCi)& BCo ); |
|
Ebi = BCi ^((~BCo)& BCu ); |
|
Ebo = BCo ^((~BCu)& BCa ); |
|
Ebu = BCu ^((~BCa)& BCe ); |
|
|
|
Abo ^= Do; |
|
BCa = ROL(Abo, 28); |
|
Agu ^= Du; |
|
BCe = ROL(Agu, 20); |
|
Aka ^= Da; |
|
BCi = ROL(Aka, 3); |
|
Ame ^= De; |
|
BCo = ROL(Ame, 45); |
|
Asi ^= Di; |
|
BCu = ROL(Asi, 61); |
|
Ega = BCa ^((~BCe)& BCi ); |
|
Ege = BCe ^((~BCi)& BCo ); |
|
Egi = BCi ^((~BCo)& BCu ); |
|
Ego = BCo ^((~BCu)& BCa ); |
|
Egu = BCu ^((~BCa)& BCe ); |
|
|
|
Abe ^= De; |
|
BCa = ROL(Abe, 1); |
|
Agi ^= Di; |
|
BCe = ROL(Agi, 6); |
|
Ako ^= Do; |
|
BCi = ROL(Ako, 25); |
|
Amu ^= Du; |
|
BCo = ROL_mult8(Amu, 8); |
|
Asa ^= Da; |
|
BCu = ROL(Asa, 18); |
|
Eka = BCa ^((~BCe)& BCi ); |
|
Eke = BCe ^((~BCi)& BCo ); |
|
Eki = BCi ^((~BCo)& BCu ); |
|
Eko = BCo ^((~BCu)& BCa ); |
|
Eku = BCu ^((~BCa)& BCe ); |
|
|
|
Abu ^= Du; |
|
BCa = ROL(Abu, 27); |
|
Aga ^= Da; |
|
BCe = ROL(Aga, 36); |
|
Ake ^= De; |
|
BCi = ROL(Ake, 10); |
|
Ami ^= Di; |
|
BCo = ROL(Ami, 15); |
|
Aso ^= Do; |
|
BCu = ROL_mult8(Aso, 56); |
|
Ema = BCa ^((~BCe)& BCi ); |
|
Eme = BCe ^((~BCi)& BCo ); |
|
Emi = BCi ^((~BCo)& BCu ); |
|
Emo = BCo ^((~BCu)& BCa ); |
|
Emu = BCu ^((~BCa)& BCe ); |
|
|
|
Abi ^= Di; |
|
BCa = ROL(Abi, 62); |
|
Ago ^= Do; |
|
BCe = ROL(Ago, 55); |
|
Aku ^= Du; |
|
BCi = ROL(Aku, 39); |
|
Ama ^= Da; |
|
BCo = ROL(Ama, 41); |
|
Ase ^= De; |
|
BCu = ROL(Ase, 2); |
|
Esa = BCa ^((~BCe)& BCi ); |
|
Ese = BCe ^((~BCi)& BCo ); |
|
Esi = BCi ^((~BCo)& BCu ); |
|
Eso = BCo ^((~BCu)& BCa ); |
|
Esu = BCu ^((~BCa)& BCe ); |
|
|
|
// prepareTheta |
|
BCa = Eba^Ega^Eka^Ema^Esa; |
|
BCe = Ebe^Ege^Eke^Eme^Ese; |
|
BCi = Ebi^Egi^Eki^Emi^Esi; |
|
BCo = Ebo^Ego^Eko^Emo^Eso; |
|
BCu = Ebu^Egu^Eku^Emu^Esu; |
|
|
|
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A) |
|
Da = BCu^ROL(BCe, 1); |
|
De = BCa^ROL(BCi, 1); |
|
Di = BCe^ROL(BCo, 1); |
|
Do = BCi^ROL(BCu, 1); |
|
Du = BCo^ROL(BCa, 1); |
|
|
|
Eba ^= Da; |
|
BCa = Eba; |
|
Ege ^= De; |
|
BCe = ROL(Ege, 44); |
|
Eki ^= Di; |
|
BCi = ROL(Eki, 43); |
|
Emo ^= Do; |
|
BCo = ROL(Emo, 21); |
|
Esu ^= Du; |
|
BCu = ROL(Esu, 14); |
|
Aba = BCa ^((~BCe)& BCi ); |
|
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1]; |
|
Abe = BCe ^((~BCi)& BCo ); |
|
Abi = BCi ^((~BCo)& BCu ); |
|
Abo = BCo ^((~BCu)& BCa ); |
|
Abu = BCu ^((~BCa)& BCe ); |
|
|
|
Ebo ^= Do; |
|
BCa = ROL(Ebo, 28); |
|
Egu ^= Du; |
|
BCe = ROL(Egu, 20); |
|
Eka ^= Da; |
|
BCi = ROL(Eka, 3); |
|
Eme ^= De; |
|
BCo = ROL(Eme, 45); |
|
Esi ^= Di; |
|
BCu = ROL(Esi, 61); |
|
Aga = BCa ^((~BCe)& BCi ); |
|
Age = BCe ^((~BCi)& BCo ); |
|
Agi = BCi ^((~BCo)& BCu ); |
|
Ago = BCo ^((~BCu)& BCa ); |
|
Agu = BCu ^((~BCa)& BCe ); |
|
|
|
Ebe ^= De; |
|
BCa = ROL(Ebe, 1); |
|
Egi ^= Di; |
|
BCe = ROL(Egi, 6); |
|
Eko ^= Do; |
|
BCi = ROL(Eko, 25); |
|
Emu ^= Du; |
|
BCo = ROL_mult8(Emu, 8); |
|
Esa ^= Da; |
|
BCu = ROL(Esa, 18); |
|
Aka = BCa ^((~BCe)& BCi ); |
|
Ake = BCe ^((~BCi)& BCo ); |
|
Aki = BCi ^((~BCo)& BCu ); |
|
Ako = BCo ^((~BCu)& BCa ); |
|
Aku = BCu ^((~BCa)& BCe ); |
|
|
|
Ebu ^= Du; |
|
BCa = ROL(Ebu, 27); |
|
Ega ^= Da; |
|
BCe = ROL(Ega, 36); |
|
Eke ^= De; |
|
BCi = ROL(Eke, 10); |
|
Emi ^= Di; |
|
BCo = ROL(Emi, 15); |
|
Eso ^= Do; |
|
BCu = ROL_mult8(Eso, 56); |
|
Ama = BCa ^((~BCe)& BCi ); |
|
Ame = BCe ^((~BCi)& BCo ); |
|
Ami = BCi ^((~BCo)& BCu ); |
|
Amo = BCo ^((~BCu)& BCa ); |
|
Amu = BCu ^((~BCa)& BCe ); |
|
|
|
Ebi ^= Di; |
|
BCa = ROL(Ebi, 62); |
|
Ego ^= Do; |
|
BCe = ROL(Ego, 55); |
|
Eku ^= Du; |
|
BCi = ROL(Eku, 39); |
|
Ema ^= Da; |
|
BCo = ROL(Ema, 41); |
|
Ese ^= De; |
|
BCu = ROL(Ese, 2); |
|
Asa = BCa ^((~BCe)& BCi ); |
|
Ase = BCe ^((~BCi)& BCo ); |
|
Asi = BCi ^((~BCo)& BCu ); |
|
Aso = BCo ^((~BCu)& BCa ); |
|
Asu = BCu ^((~BCa)& BCe ); |
|
} |
|
|
|
if (validate) { |
|
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
g_out[3] = Abo; |
|
g_out[2] = Abi; |
|
g_out[1] = Abe; |
|
g_out[0] = Aba; |
|
} |
|
|
|
// the likelyhood of meeting the hashing target is so low, that we're not guarding this |
|
// with atomic writes, locks or similar... |
|
uint64_t *g_good64 = (uint64_t*)g_good; |
|
if (Abo <= ptarget64[3]) { |
|
if (Abo < g_good64[3]) { |
|
g_good64[3] = Abo; |
|
g_good64[2] = Abi; |
|
g_good64[1] = Abe; |
|
g_good64[0] = Aba; |
|
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
} |
|
} |
|
} |
|
|
|
static std::map<int, uint32_t *> context_good[2]; |
|
|
|
bool default_prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8]) |
|
{ |
|
static bool init[MAX_GPUS] = { 0 }; |
|
|
|
if (!init[thr_id]) |
|
{ |
|
checkCudaErrors(cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice)); |
|
|
|
// allocate pinned host memory for good hashes |
|
uint32_t *tmp; |
|
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp; |
|
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp; |
|
|
|
init[thr_id] = true; |
|
} |
|
checkCudaErrors(cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); |
|
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); |
|
|
|
return context_good[0][thr_id] && context_good[1][thr_id]; |
|
} |
|
|
|
void default_do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h) |
|
{ |
|
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id])); |
|
|
|
crypto_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h); |
|
|
|
// copy hashes from device memory to host (ALL hashes, lots of data...) |
|
if (do_d2h && hash != NULL) { |
|
size_t mem_size = throughput * sizeof(uint32_t) * 8; |
|
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size, |
|
cudaMemcpyDeviceToHost, context_streams[stream][thr_id])); |
|
} |
|
else if (hash != NULL) { |
|
// asynchronous copy of winning nonce (just 4 bytes...) |
|
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t), |
|
cudaMemcpyDeviceToHost, context_streams[stream][thr_id])); |
|
} |
|
}
|
|
|