ccminer-gostd-lite/quark/cuda_skein512.cu
Tanguy Pruvot 47f309ffb4 ifdef some unused kernels on SM5+
no need to build both (mine and sm variants)

and put global hashrate to 0 while waiting...
2015-10-28 07:25:52 +01:00

1009 lines
25 KiB
Plaintext

#define SP_KERNEL
#ifdef SP_KERNEL
#include "cuda_skein512_sp.cuh"
#undef TFBIG_KINIT
#undef TFBIG_ADDKEY
#undef TFBIG_MIX
#else
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
#include "cuda_helper.h"
#endif
static __constant__ uint64_t c_PaddedMessage80[20]; // padded message (80 bytes + 72 bytes midstate + align)
// Take a look at: https://www.schneier.com/skein1.3.pdf
#define SHL(x, n) ((x) << (n))
#define SHR(x, n) ((x) >> (n))
#if __CUDA_ARCH__ > 300
__device__
uint64_t skein_rotl64(const uint64_t x, const int offset)
{
uint64_t res;
asm("{\n\t"
".reg .u32 tl,th,vl,vh;\n\t"
".reg .pred p;\n\t"
"mov.b64 {tl,th}, %1;\n\t"
"shf.l.wrap.b32 vl, tl, th, %2;\n\t"
"shf.l.wrap.b32 vh, th, tl, %2;\n\t"
"setp.lt.u32 p, %2, 32;\n\t"
"@!p mov.b64 %0, {vl,vh};\n\t"
"@p mov.b64 %0, {vh,vl};\n\t"
"}"
: "=l"(res) : "l"(x) , "r"(offset)
);
return res;
}
#undef ROTL64
#define ROTL64 skein_rotl64
#endif
/*
* M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7).
*/
#define M9_0_0 0
#define M9_0_1 1
#define M9_0_2 2
#define M9_0_3 3
#define M9_0_4 4
#define M9_0_5 5
#define M9_0_6 6
#define M9_0_7 7
#define M9_1_0 1
#define M9_1_1 2
#define M9_1_2 3
#define M9_1_3 4
#define M9_1_4 5
#define M9_1_5 6
#define M9_1_6 7
#define M9_1_7 8
#define M9_2_0 2
#define M9_2_1 3
#define M9_2_2 4
#define M9_2_3 5
#define M9_2_4 6
#define M9_2_5 7
#define M9_2_6 8
#define M9_2_7 0
#define M9_3_0 3
#define M9_3_1 4
#define M9_3_2 5
#define M9_3_3 6
#define M9_3_4 7
#define M9_3_5 8
#define M9_3_6 0
#define M9_3_7 1
#define M9_4_0 4
#define M9_4_1 5
#define M9_4_2 6
#define M9_4_3 7
#define M9_4_4 8
#define M9_4_5 0
#define M9_4_6 1
#define M9_4_7 2
#define M9_5_0 5
#define M9_5_1 6
#define M9_5_2 7
#define M9_5_3 8
#define M9_5_4 0
#define M9_5_5 1
#define M9_5_6 2
#define M9_5_7 3
#define M9_6_0 6
#define M9_6_1 7
#define M9_6_2 8
#define M9_6_3 0
#define M9_6_4 1
#define M9_6_5 2
#define M9_6_6 3
#define M9_6_7 4
#define M9_7_0 7
#define M9_7_1 8
#define M9_7_2 0
#define M9_7_3 1
#define M9_7_4 2
#define M9_7_5 3
#define M9_7_6 4
#define M9_7_7 5
#define M9_8_0 8
#define M9_8_1 0
#define M9_8_2 1
#define M9_8_3 2
#define M9_8_4 3
#define M9_8_5 4
#define M9_8_6 5
#define M9_8_7 6
#define M9_9_0 0
#define M9_9_1 1
#define M9_9_2 2
#define M9_9_3 3
#define M9_9_4 4
#define M9_9_5 5
#define M9_9_6 6
#define M9_9_7 7
#define M9_10_0 1
#define M9_10_1 2
#define M9_10_2 3
#define M9_10_3 4
#define M9_10_4 5
#define M9_10_5 6
#define M9_10_6 7
#define M9_10_7 8
#define M9_11_0 2
#define M9_11_1 3
#define M9_11_2 4
#define M9_11_3 5
#define M9_11_4 6
#define M9_11_5 7
#define M9_11_6 8
#define M9_11_7 0
#define M9_12_0 3
#define M9_12_1 4
#define M9_12_2 5
#define M9_12_3 6
#define M9_12_4 7
#define M9_12_5 8
#define M9_12_6 0
#define M9_12_7 1
#define M9_13_0 4
#define M9_13_1 5
#define M9_13_2 6
#define M9_13_3 7
#define M9_13_4 8
#define M9_13_5 0
#define M9_13_6 1
#define M9_13_7 2
#define M9_14_0 5
#define M9_14_1 6
#define M9_14_2 7
#define M9_14_3 8
#define M9_14_4 0
#define M9_14_5 1
#define M9_14_6 2
#define M9_14_7 3
#define M9_15_0 6
#define M9_15_1 7
#define M9_15_2 8
#define M9_15_3 0
#define M9_15_4 1
#define M9_15_5 2
#define M9_15_6 3
#define M9_15_7 4
#define M9_16_0 7
#define M9_16_1 8
#define M9_16_2 0
#define M9_16_3 1
#define M9_16_4 2
#define M9_16_5 3
#define M9_16_6 4
#define M9_16_7 5
#define M9_17_0 8
#define M9_17_1 0
#define M9_17_2 1
#define M9_17_3 2
#define M9_17_4 3
#define M9_17_5 4
#define M9_17_6 5
#define M9_17_7 6
#define M9_18_0 0
#define M9_18_1 1
#define M9_18_2 2
#define M9_18_3 3
#define M9_18_4 4
#define M9_18_5 5
#define M9_18_6 6
#define M9_18_7 7
/*
* M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1).
*/
#define M3_0_0 0
#define M3_0_1 1
#define M3_1_0 1
#define M3_1_1 2
#define M3_2_0 2
#define M3_2_1 0
#define M3_3_0 0
#define M3_3_1 1
#define M3_4_0 1
#define M3_4_1 2
#define M3_5_0 2
#define M3_5_1 0
#define M3_6_0 0
#define M3_6_1 1
#define M3_7_0 1
#define M3_7_1 2
#define M3_8_0 2
#define M3_8_1 0
#define M3_9_0 0
#define M3_9_1 1
#define M3_10_0 1
#define M3_10_1 2
#define M3_11_0 2
#define M3_11_1 0
#define M3_12_0 0
#define M3_12_1 1
#define M3_13_0 1
#define M3_13_1 2
#define M3_14_0 2
#define M3_14_1 0
#define M3_15_0 0
#define M3_15_1 1
#define M3_16_0 1
#define M3_16_1 2
#define M3_17_0 2
#define M3_17_1 0
#define M3_18_0 0
#define M3_18_1 1
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i))
#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v))
#define TFBIG_KINIT(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \
k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \
^ SPH_C64(0x1BD11BDAA9FC1A22); \
t2 = t0 ^ t1; \
}
#define TFBIG_ADDKEY(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + (uint64_t)s); \
}
#define TFBIG_MIX(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROTL64(x1, rc) ^ x0; \
}
#define TFBIG_MIX8(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX(w0, w1, rc0); \
TFBIG_MIX(w2, w3, rc1); \
TFBIG_MIX(w4, w5, rc2); \
TFBIG_MIX(w6, w7, rc3); \
}
#define TFBIG_4e(s) { \
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o(s) { \
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
/* uint64_t midstate for skein 80 */
#define TFBIG_ADDKEY_PRE(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + (s)); \
}
#define TFBIG_MIX_PRE(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROTL64(x1, rc) ^ x0; \
}
#define TFBIG_MIX8_PRE(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX_PRE(w0, w1, rc0); \
TFBIG_MIX_PRE(w2, w3, rc1); \
TFBIG_MIX_PRE(w4, w5, rc2); \
TFBIG_MIX_PRE(w6, w7, rc3); \
}
#define TFBIG_4e_PRE(s) { \
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o_PRE(s) { \
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
/* uint2 variant for SM3.2+ */
#define TFBIG_KINIT_UI2(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \
k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \
^ vectorize(SPH_C64(0x1BD11BDAA9FC1A22)); \
t2 = t0 ^ t1; \
}
#define TFBIG_ADDKEY_UI2(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + vectorize(s)); \
}
#define TFBIG_MIX_UI2(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROL2(x1, rc) ^ x0; \
}
#define TFBIG_MIX8_UI2(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX_UI2(w0, w1, rc0); \
TFBIG_MIX_UI2(w2, w3, rc1); \
TFBIG_MIX_UI2(w4, w5, rc2); \
TFBIG_MIX_UI2(w6, w7, rc3); \
}
#define TFBIG_4e_UI2(s) { \
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o_UI2(s) { \
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
__global__
void quark_skein512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint64_t * const __restrict__ g_hash, uint32_t *g_nonceVector)
{
#if !defined(SP_KERNEL) || __CUDA_ARCH__ < 500
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// Skein
uint2 h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint2 t0, t1, t2;
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
uint32_t hashPosition = nounce - startNounce;
uint64_t *inpHash = &g_hash[hashPosition * 8U];
// Initialisierung
h0 = vectorize(0x4903ADFF749C51CEull);
h1 = vectorize(0x0D95DE399746DF03ull);
h2 = vectorize(0x8FD1934127C79BCEull);
h3 = vectorize(0x9A255629FF352CB1ull);
h4 = vectorize(0x5DB62599DF6CA7B0ull);
h5 = vectorize(0xEABE394CA9D5C3F4ull);
h6 = vectorize(0x991112C71A75B523ull);
h7 = vectorize(0xAE18A40B660FCC33ull);
uint2 p[8];
// 1st Round -> etype = 480, ptr = 64, bcount = 0, data = msg
#pragma unroll 8
for (int i = 0; i < 8; i++)
p[i] = vectorize(inpHash[i]);
t0 = vectorize(64); // ptr
// t1 = vectorize(480ull << 55); // etype
t1 = vectorize(0xf000000000000000ULL);
//#if CUDA_VERSION >= 7000
// doesnt really affect x11 perfs.
__threadfence();
//#endif
TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
h0 = vectorize(inpHash[0]) ^ p[0];
h1 = vectorize(inpHash[1]) ^ p[1];
h2 = vectorize(inpHash[2]) ^ p[2];
h3 = vectorize(inpHash[3]) ^ p[3];
h4 = vectorize(inpHash[4]) ^ p[4];
h5 = vectorize(inpHash[5]) ^ p[5];
h6 = vectorize(inpHash[6]) ^ p[6];
h7 = vectorize(inpHash[7]) ^ p[7];
// 2. Runde -> etype = 510, ptr = 8, bcount = 0, data = 0
#pragma unroll 8
for(int i=0; i<8; i++)
p[i] = vectorize(0);
t0 = vectorize(8); // ptr
//t1 = vectorize(510ull << 55); // etype
t1 = vectorize(0xff00000000000000ULL);
TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
// output
uint64_t *outpHash = &g_hash[hashPosition * 8U];
#pragma unroll 8
for(int i=0; i<8; i++)
outpHash[i] = devectorize(p[i]);
}
#endif /* SM < 5.0 */
}
__global__
void quark_skein512_gpu_hash_64_sm3(uint32_t threads, uint32_t startNounce, uint64_t * const __restrict__ g_hash, uint32_t *g_nonceVector)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// Skein
uint64_t p[8];
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint64_t t0, t1, t2;
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
uint32_t hashPosition = nounce - startNounce;
uint64_t *inpHash = &g_hash[hashPosition * 8];
// Init
h0 = 0x4903ADFF749C51CEull;
h1 = 0x0D95DE399746DF03ull;
h2 = 0x8FD1934127C79BCEull;
h3 = 0x9A255629FF352CB1ull;
h4 = 0x5DB62599DF6CA7B0ull;
h5 = 0xEABE394CA9D5C3F4ull;
h6 = 0x991112C71A75B523ull;
h7 = 0xAE18A40B660FCC33ull;
// 1. Runde -> etype = 480, ptr = 64, bcount = 0, data = msg
#pragma unroll 8
for(int i=0; i<8; i++)
p[i] = inpHash[i];
t0 = 64; // ptr
// t1 = 480ull << 55; // etype
t1 = 0xf000000000000000ULL;
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e(0);
TFBIG_4o(1);
TFBIG_4e(2);
TFBIG_4o(3);
TFBIG_4e(4);
TFBIG_4o(5);
TFBIG_4e(6);
TFBIG_4o(7);
TFBIG_4e(8);
TFBIG_4o(9);
TFBIG_4e(10);
TFBIG_4o(11);
TFBIG_4e(12);
TFBIG_4o(13);
TFBIG_4e(14);
TFBIG_4o(15);
TFBIG_4e(16);
TFBIG_4o(17);
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
h0 = inpHash[0] ^ p[0];
h1 = inpHash[1] ^ p[1];
h2 = inpHash[2] ^ p[2];
h3 = inpHash[3] ^ p[3];
h4 = inpHash[4] ^ p[4];
h5 = inpHash[5] ^ p[5];
h6 = inpHash[6] ^ p[6];
h7 = inpHash[7] ^ p[7];
// 2. Runde -> etype = 510, ptr = 8, bcount = 0, data = 0
#pragma unroll 8
for(int i=0; i<8; i++)
p[i] = 0ull;
t0 = 8; // ptr
t1 = 510ull << 55; // etype
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e(0);
TFBIG_4o(1);
TFBIG_4e(2);
TFBIG_4o(3);
TFBIG_4e(4);
TFBIG_4o(5);
TFBIG_4e(6);
TFBIG_4o(7);
TFBIG_4e(8);
TFBIG_4o(9);
TFBIG_4e(10);
TFBIG_4o(11);
TFBIG_4e(12);
TFBIG_4o(13);
TFBIG_4e(14);
TFBIG_4o(15);
TFBIG_4e(16);
TFBIG_4o(17);
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
// output
uint64_t *outpHash = &g_hash[hashPosition * 8];
#pragma unroll 8
for(int i=0; i<8; i++)
outpHash[i] = p[i];
}
}
__global__ __launch_bounds__(128,5)
void skein512_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint64_t *output64, int swap)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// Skein
uint2 h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint2 t0, t1, t2;
h0 = vectorize(c_PaddedMessage80[10]);
h1 = vectorize(c_PaddedMessage80[11]);
h2 = vectorize(c_PaddedMessage80[12]);
h3 = vectorize(c_PaddedMessage80[13]);
h4 = vectorize(c_PaddedMessage80[14]);
h5 = vectorize(c_PaddedMessage80[15]);
h6 = vectorize(c_PaddedMessage80[16]);
h7 = vectorize(c_PaddedMessage80[17]);
t2 = vectorize(c_PaddedMessage80[18]);
uint32_t nonce = swap ? cuda_swab32(startNounce + thread) : startNounce + thread;
uint2 nonce2 = make_uint2(_LODWORD(c_PaddedMessage80[9]), nonce);
uint2 p[8];
p[0] = vectorize(c_PaddedMessage80[8]);
p[1] = nonce2;
#pragma unroll
for (int i = 2; i < 8; i++)
p[i] = vectorize(0ull);
t0 = vectorize(0x50ull);
t1 = vectorize(0xB000000000000000ull);
TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint64_t *outpHash = &output64[thread * 8];
outpHash[0] = c_PaddedMessage80[8] ^ devectorize(p[0]);
outpHash[1] = devectorize(nonce2 ^ p[1]);
#pragma unroll
for(int i=2; i<8; i++)
outpHash[i] = devectorize(p[i]);
}
}
__global__
void skein512_gpu_hash_80_sm3(uint32_t threads, uint32_t startNounce, uint64_t *output64, int swap)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint64_t t0, t1, t2;
// Init
h0 = 0x4903ADFF749C51CEull;
h1 = 0x0D95DE399746DF03ull;
h2 = 0x8FD1934127C79BCEull;
h3 = 0x9A255629FF352CB1ull;
h4 = 0x5DB62599DF6CA7B0ull;
h5 = 0xEABE394CA9D5C3F4ull;
h6 = 0x991112C71A75B523ull;
h7 = 0xAE18A40B660FCC33ull;
t0 = 64; // ptr
//t1 = vectorize(0xE0ull << 55); // etype
t1 = 0x7000000000000000ull;
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
uint64_t p[8];
#pragma unroll 8
for (int i = 0; i<8; i++)
p[i] = c_PaddedMessage80[i];
TFBIG_4e(0);
TFBIG_4o(1);
TFBIG_4e(2);
TFBIG_4o(3);
TFBIG_4e(4);
TFBIG_4o(5);
TFBIG_4e(6);
TFBIG_4o(7);
TFBIG_4e(8);
TFBIG_4o(9);
TFBIG_4e(10);
TFBIG_4o(11);
TFBIG_4e(12);
TFBIG_4o(13);
TFBIG_4e(14);
TFBIG_4o(15);
TFBIG_4e(16);
TFBIG_4o(17);
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
h0 = c_PaddedMessage80[0] ^ p[0];
h1 = c_PaddedMessage80[1] ^ p[1];
h2 = c_PaddedMessage80[2] ^ p[2];
h3 = c_PaddedMessage80[3] ^ p[3];
h4 = c_PaddedMessage80[4] ^ p[4];
h5 = c_PaddedMessage80[5] ^ p[5];
h6 = c_PaddedMessage80[6] ^ p[6];
h7 = c_PaddedMessage80[7] ^ p[7];
uint32_t nonce = swap ? cuda_swab32(startNounce + thread) : startNounce + thread;
uint64_t nonce64 = MAKE_ULONGLONG(_LODWORD(c_PaddedMessage80[9]), nonce);
// skein_big_close -> etype = 0x160, ptr = 16, bcount = 1, extra = 16
p[0] = c_PaddedMessage80[8];
p[1] = nonce64;
#pragma unroll
for (int i = 2; i < 8; i++)
p[i] = 0ull;
t0 = 0x50ull; // SPH_T64(bcount << 6) + (sph_u64)(extra);
t1 = 0xB000000000000000ull; // (bcount >> 58) + ((sph_u64)(etype) << 55);
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e(0);
TFBIG_4o(1);
TFBIG_4e(2);
TFBIG_4o(3);
TFBIG_4e(4);
TFBIG_4o(5);
TFBIG_4e(6);
TFBIG_4o(7);
TFBIG_4e(8);
TFBIG_4o(9);
TFBIG_4e(10);
TFBIG_4o(11);
TFBIG_4e(12);
TFBIG_4o(13);
TFBIG_4e(14);
TFBIG_4o(15);
TFBIG_4e(16);
TFBIG_4o(17);
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
// skein_big_close 2nd loop -> etype = 0x1fe, ptr = 8, bcount = 0
// output
uint64_t *outpHash = &output64[thread * 8];
outpHash[0] = c_PaddedMessage80[8] ^ p[0];
outpHash[1] = nonce64 ^ p[1];
#pragma unroll
for(int i=2; i<8; i++)
outpHash[i] = p[i];
}
}
__global__ __launch_bounds__(128,6)
void skein512_gpu_hash_close(uint32_t threads, uint32_t startNounce, uint64_t *g_hash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 t0 = vectorize(8); // extra
uint2 t1 = vectorize(0xFF00000000000000ull); // etype
uint2 t2 = vectorize(0xB000000000000050ull);
uint64_t *state = &g_hash[thread * 8];
uint2 h0 = vectorize(state[0]);
uint2 h1 = vectorize(state[1]);
uint2 h2 = vectorize(state[2]);
uint2 h3 = vectorize(state[3]);
uint2 h4 = vectorize(state[4]);
uint2 h5 = vectorize(state[5]);
uint2 h6 = vectorize(state[6]);
uint2 h7 = vectorize(state[7]);
uint2 h8;
TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
uint2 p[8] = { 0 };
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint64_t *outpHash = state;
#pragma unroll 8
for (int i = 0; i < 8; i++)
outpHash[i] = devectorize(p[i]);
}
}
__global__ __launch_bounds__(128,6)
void skein512_gpu_hash_close_sm3(uint32_t threads, uint32_t startNounce, uint64_t *g_hash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint64_t t0 = 8ull; // extra
uint64_t t1 = 0xFF00000000000000ull; // etype
uint64_t t2 = 0xB000000000000050ull;
uint64_t *state = &g_hash[thread * 8];
uint64_t h0 = state[0];
uint64_t h1 = state[1];
uint64_t h2 = state[2];
uint64_t h3 = state[3];
uint64_t h4 = state[4];
uint64_t h5 = state[5];
uint64_t h6 = state[6];
uint64_t h7 = state[7];
uint64_t h8;
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
uint64_t p[8] = { 0 };
TFBIG_4e(0);
TFBIG_4o(1);
TFBIG_4e(2);
TFBIG_4o(3);
TFBIG_4e(4);
TFBIG_4o(5);
TFBIG_4e(6);
TFBIG_4o(7);
TFBIG_4e(8);
TFBIG_4o(9);
TFBIG_4e(10);
TFBIG_4o(11);
TFBIG_4e(12);
TFBIG_4o(13);
TFBIG_4e(14);
TFBIG_4o(15);
TFBIG_4e(16);
TFBIG_4o(17);
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint64_t *outpHash = state;
#pragma unroll 8
for (int i = 0; i < 8; i++)
outpHash[i] = p[i];
}
}
__host__
void quark_skein512_cpu_init(int thr_id, uint32_t threads)
{
// store the binary SM version
cuda_get_arch(thr_id);
}
__host__
void quark_skein512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const uint32_t threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
int dev_id = device_map[thr_id];
// uint2 uint64 variants for SM 3.2+
#ifdef SP_KERNEL
if (device_sm[dev_id] >= 500 && cuda_arch[dev_id] >= 500)
quark_skein512_cpu_hash_64(threads, startNounce, d_nonceVector, d_hash); /* sp.cuh */
else
#endif
if (device_sm[dev_id] > 300 && cuda_arch[dev_id] > 300)
quark_skein512_gpu_hash_64 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
else
quark_skein512_gpu_hash_64_sm3 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}
/* skein / skein2 */
__host__
static void skein512_precalc_80(uint64_t* message)
{
uint64_t p[8];
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint64_t t0, t1, t2;
h0 = 0x4903ADFF749C51CEull;
h1 = 0x0D95DE399746DF03ull;
h2 = 0x8FD1934127C79BCEull;
h3 = 0x9A255629FF352CB1ull;
h4 = 0x5DB62599DF6CA7B0ull;
h5 = 0xEABE394CA9D5C3F4ull;
h6 = 0x991112C71A75B523ull;
h7 = 0xAE18A40B660FCC33ull;
// h8 = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^ h7 ^ SPH_C64(0x1BD11BDAA9FC1A22);
h8 = 0xcab2076d98173ec4ULL;
t0 = 64; // ptr
t1 = 0x7000000000000000ull;
t2 = 0x7000000000000040ull;
memcpy(&p[0], &message[0], 64);
TFBIG_4e_PRE(0);
TFBIG_4o_PRE(1);
TFBIG_4e_PRE(2);
TFBIG_4o_PRE(3);
TFBIG_4e_PRE(4);
TFBIG_4o_PRE(5);
TFBIG_4e_PRE(6);
TFBIG_4o_PRE(7);
TFBIG_4e_PRE(8);
TFBIG_4o_PRE(9);
TFBIG_4e_PRE(10);
TFBIG_4o_PRE(11);
TFBIG_4e_PRE(12);
TFBIG_4o_PRE(13);
TFBIG_4e_PRE(14);
TFBIG_4o_PRE(15);
TFBIG_4e_PRE(16);
TFBIG_4o_PRE(17);
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
message[10] = message[0] ^ p[0];
message[11] = message[1] ^ p[1];
message[12] = message[2] ^ p[2];
message[13] = message[3] ^ p[3];
message[14] = message[4] ^ p[4];
message[15] = message[5] ^ p[5];
message[16] = message[6] ^ p[6];
message[17] = message[7] ^ p[7];
message[18] = t2;
}
__host__
void skein512_cpu_setBlock_80(void *pdata)
{
uint64_t message[20];
memcpy(&message[0], pdata, 80);
skein512_precalc_80(message);
cudaMemcpyToSymbol(c_PaddedMessage80, message, sizeof(message), 0, cudaMemcpyHostToDevice);
CUDA_SAFE_CALL(cudaGetLastError());
}
__host__
void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *g_hash, int swap)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
int dev_id = device_map[thr_id];
uint64_t *d_hash = (uint64_t*) g_hash;
if (device_sm[dev_id] > 300 && cuda_arch[dev_id] > 300) {
// hash function is cut in 2 parts to reduce kernel size
skein512_gpu_hash_80 <<< grid, block >>> (threads, startNounce, d_hash, swap);
skein512_gpu_hash_close <<< grid, block >>> (threads, startNounce, d_hash);
} else {
// variant without uint2 variables
skein512_gpu_hash_80_sm3 <<< grid, block >>> (threads, startNounce, d_hash, swap);
skein512_gpu_hash_close_sm3 <<< grid, block >>> (threads, startNounce, d_hash);
}
}