GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

345 lines
10 KiB

#ifndef CUDA_HELPER_H
#define CUDA_HELPER_H
#include <cuda.h>
#include <cuda_runtime.h>
#if defined(_MSC_VER)
/* reduce warnings */
#include <device_functions.h>
#include <device_launch_parameters.h>
#endif
#include <stdint.h>
// common functions
extern void cuda_check_cpu_init(int thr_id, int threads);
extern void cuda_check_cpu_setTarget(const void *ptarget);
extern uint32_t cuda_check_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order);
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
extern __device__ __device_builtin__ void __syncthreads(void);
#ifndef __CUDA_ARCH__
// define blockDim and threadIdx for host
extern const dim3 blockDim;
extern const uint3 threadIdx;
#endif
#ifndef SPH_C32
#define SPH_C32(x) ((uint32_t)(x ## U))
#endif
#ifndef SPH_C64
#define SPH_C64(x) ((uint64_t)(x ## ULL))
#endif
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n))))
#else
// Kepler (Compute 3.5, 5.0)
#define ROTL32(x, n) __funnelshift_l( (x), (x), (n) )
#endif
__device__ __forceinline__ uint64_t MAKE_ULONGLONG(uint32_t LO, uint32_t HI)
{
#if __CUDA_ARCH__ >= 130
return __double_as_longlong(__hiloint2double(HI, LO));
#else
return (uint64_t)LO | (((uint64_t)HI) << 32);
#endif
}
// das Hi Word in einem 64 Bit Typen ersetzen
__device__ __forceinline__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL);
}
// das Lo Word in einem 64 Bit Typen ersetzen
__device__ __forceinline__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y);
}
// Endian Drehung für 32 Bit Typen
#ifdef __CUDA_ARCH__
__device__ __forceinline__ uint32_t cuda_swab32(uint32_t x)
{
/* device */
return __byte_perm(x, x, 0x0123);
}
#else
/* host */
#define cuda_swab32(x) \
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
#endif
// das Lo Word aus einem 64 Bit Typen extrahieren
__device__ __forceinline__ uint32_t _LOWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2loint(__longlong_as_double(x));
#else
return (uint32_t)(x & 0xFFFFFFFFULL);
#endif
}
// das Hi Word aus einem 64 Bit Typen extrahieren
__device__ __forceinline__ uint32_t _HIWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2hiint(__longlong_as_double(x));
#else
return (uint32_t)(x >> 32);
#endif
}
#ifdef __CUDA_ARCH__
__device__ __forceinline__ uint64_t cuda_swab64(uint64_t x)
{
// Input: 77665544 33221100
// Output: 00112233 44556677
uint64_t result = __byte_perm((uint32_t) x, 0, 0x0123);
return (result << 32) | __byte_perm(_HIWORD(x), 0, 0x0123);
}
#else
/* host */
#define cuda_swab64(x) \
((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
(((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
#endif
/*********************************************************************/
// Macro to catch CUDA errors in CUDA runtime calls
#define CUDA_SAFE_CALL(call) \
do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
fprintf (stderr, "Cuda error in file '%s' in line %i : %s.\n",\
__FILE__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
/*********************************************************************/
#ifdef _WIN64
#define USE_XOR_ASM_OPTS 0
#else
#define USE_XOR_ASM_OPTS 1
#endif
#if USE_XOR_ASM_OPTS
// device asm for whirpool
__device__ __forceinline__
uint64_t xor1(uint64_t a, uint64_t b)
{
uint64_t result;
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(a), "l"(b));
return result;
}
#else
#define xor1(a,b) (a ^ b)
#endif
#if USE_XOR_ASM_OPTS
// device asm for whirpool
__device__ __forceinline__
uint64_t xor3(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("xor.b64 %0, %2, %3;\n\t"
"xor.b64 %0, %0, %1;\n\t"
/* output : input registers */
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
#else
#define xor3(a,b,c) (a ^ b ^ c)
#endif
#if USE_XOR_ASM_OPTS
// device asm for whirpool
__device__ __forceinline__
uint64_t xor8(uint64_t a, uint64_t b, uint64_t c, uint64_t d,uint64_t e,uint64_t f,uint64_t g, uint64_t h)
{
uint64_t result;
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(g) ,"l"(h));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(f));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(e));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(d));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a));
return result;
}
#else
#define xor8(a,b,c,d,e,f,g,h) (a^b^c^d^e^f^g^h)
#endif
// device asm for x17
__device__ __forceinline__
uint64_t xandx(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 n;\n\t"
"xor.b64 %0, %2, %3;\n\t"
"and.b64 n, %0, %1;\n\t"
"xor.b64 %0, n, %3;"
"}\n"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
// device asm for x17
__device__ __forceinline__
uint64_t sph_t64(uint64_t x)
{
uint64_t result;
asm("{\n\t"
"and.b64 %0,%1,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n"
: "=l"(result) : "l"(x));
return result;
}
// device asm for x17
__device__ __forceinline__
uint64_t andor(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n;\n\t"
"and.b64 m, %1, %2;\n\t"
" or.b64 n, %1, %2;\n\t"
"and.b64 %0, n, %3;\n\t"
" or.b64 %0, %0, m ;\n\t"
"}\n"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
// device asm for x17
__device__ __forceinline__
uint64_t shr_t64(uint64_t x, uint32_t n)
{
uint64_t result;
asm("shr.b64 %0,%1,%2;\n\t"
"and.b64 %0,%0,0xFFFFFFFFFFFFFFFF;\n\t" /* useful ? */
: "=l"(result) : "l"(x), "r"(n));
return result;
}
// device asm for ?
__device__ __forceinline__
uint64_t shl_t64(uint64_t x, uint32_t n)
{
uint64_t result;
asm("shl.b64 %0,%1,%2;\n\t"
"and.b64 %0,%0,0xFFFFFFFFFFFFFFFF;\n\t" /* useful ? */
: "=l"(result) : "l"(x), "r"(n));
return result;
}
#ifndef USE_ROT_ASM_OPT
#define USE_ROT_ASM_OPT 1
#endif
// 64-bit ROTATE RIGHT
#if __CUDA_ARCH__ >= 350 && USE_ROT_ASM_OPT == 1
/* complicated sm >= 3.5 one (with Funnel Shifter beschleunigt), to bench */
__device__ __forceinline__
uint64_t ROTR64(const uint64_t value, const int offset) {
uint2 result;
if(offset < 32) {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
} else {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
}
return __double_as_longlong(__hiloint2double(result.y, result.x));
}
#elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2
__device__ __forceinline__
uint64_t ROTR64(const uint64_t x, const int offset)
{
uint64_t result;
asm("{\n\t"
".reg .b64 lhs;\n\t"
".reg .u32 roff;\n\t"
"shr.b64 lhs, %1, %2;\n\t"
"sub.u32 roff, 64, %2;\n\t"
"shl.b64 %0, %1, roff;\n\t"
"add.u64 %0, %0, lhs;\n\t"
"}\n"
: "=l"(result) : "l"(x), "r"(offset));
return result;
}
#else
/* host */
#define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
// 64-bit ROTATE LEFT
#if __CUDA_ARCH__ >= 350 && USE_ROT_ASM_OPT == 1
__device__ __forceinline__
uint64_t ROTL64(const uint64_t value, const int offset) {
uint2 result;
if(offset >= 32) {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
} else {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
}
return __double_as_longlong(__hiloint2double(result.y, result.x));
}
#elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2
__device__ __forceinline__
uint64_t ROTL64(const uint64_t x, const int offset)
{
uint64_t result;
asm("{\n\t"
".reg .b64 lhs;\n\t"
".reg .u32 roff;\n\t"
"shl.b64 lhs, %1, %2;\n\t"
"sub.u32 roff, 64, %2;\n\t"
"shr.b64 %0, %1, roff;\n\t"
"add.u64 %0, lhs, %0;\n\t"
"}\n"
: "=l"(result) : "l"(x), "r"(offset));
return result;
}
#elif __CUDA_ARCH__ >= 350 && USE_ROT_ASM_OPT == 3
__device__
uint64_t ROTL64(const uint64_t x, const int offset)
{
uint64_t res;
asm("{\n\t"
".reg .u32 tl,th,vl,vh;\n\t"
".reg .pred p;\n\t"
"mov.b64 {tl,th}, %1;\n\t"
"shf.l.wrap.b32 vl, tl, th, %2;\n\t"
"shf.l.wrap.b32 vh, th, tl, %2;\n\t"
"setp.lt.u32 p, %2, 32;\n\t"
"@!p mov.b64 %0, {vl,vh};\n\t"
"@p mov.b64 %0, {vh,vl};\n\t"
"}"
: "=l"(res) : "l"(x) , "r"(offset)
);
return res;
}
#else
/* host */
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#endif
#endif // #ifndef CUDA_HELPER_H