GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

181 lines
5.8 KiB

#include "cryptonight.h"
extern char *device_config[MAX_GPUS]; // -l 32x16
static __thread uint32_t cn_blocks;
static __thread uint32_t cn_threads;
// used for gpu intensity on algo init
static __thread bool gpu_init_shown = false;
#define gpulog_init(p,thr,fmt, ...) if (!gpu_init_shown) \
gpulog(p, thr, fmt, ##__VA_ARGS__)
static uint64_t *d_long_state[MAX_GPUS];
static uint64_t *d_ctx_state[MAX_GPUS];
static uint32_t *d_ctx_key1[MAX_GPUS];
static uint32_t *d_ctx_key2[MAX_GPUS];
static uint32_t *d_ctx_text[MAX_GPUS];
static uint32_t *d_ctx_a[MAX_GPUS];
static uint32_t *d_ctx_b[MAX_GPUS];
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_cryptonight(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
int res = 0;
uint32_t throughput = 0;
uint32_t *ptarget = work->target;
uint8_t *pdata = (uint8_t*) work->data;
uint32_t *nonceptr = (uint32_t*) (&pdata[39]);
const uint32_t first_nonce = *nonceptr;
uint32_t nonce = first_nonce;
int dev_id = device_map[thr_id];
if(opt_benchmark) {
ptarget[7] = 0x00ff;
}
if(!init[thr_id])
{
int mem = cuda_available_memory(thr_id);
int mul = device_sm[dev_id] >= 300 ? 4 : 1; // see cryptonight-core.cu
cn_threads = device_sm[dev_id] >= 600 ? 16 : 8; // real TPB is x4 on SM3+
cn_blocks = device_mpcount[dev_id] * 4;
if (cn_blocks*cn_threads*2.2 > mem) cn_blocks = device_mpcount[dev_id] * 2;
if (!opt_quiet)
gpulog_init(LOG_INFO, thr_id, "%s, %d MB available, %hd SMX", device_name[dev_id],
mem, device_mpcount[dev_id]);
if (device_config[thr_id]) {
int res = sscanf(device_config[thr_id], "%ux%u", &cn_blocks, &cn_threads);
throughput = cuda_default_throughput(thr_id, cn_blocks*cn_threads);
gpulog_init(LOG_INFO, thr_id, "Using %ux%u(x%d) kernel launch config, %u threads",
cn_blocks, cn_threads, mul, throughput);
} else {
throughput = cuda_default_throughput(thr_id, cn_blocks*cn_threads);
if (throughput != cn_blocks*cn_threads && cn_threads) {
cn_blocks = throughput / cn_threads;
throughput = cn_threads * cn_blocks;
}
gpulog_init(LOG_INFO, thr_id, "%u threads (%g) with %u blocks",// of %ux%d",
throughput, throughput2intensity(throughput), cn_blocks);//, cn_threads, mul);
}
if(sizeof(size_t) == 4 && throughput > UINT32_MAX / MEMORY) {
gpulog(LOG_ERR, thr_id, "THE 32bit VERSION CAN'T ALLOCATE MORE THAN 4GB OF MEMORY!");
gpulog(LOG_ERR, thr_id, "PLEASE REDUCE THE NUMBER OF THREADS OR BLOCKS");
exit(1);
}
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
const size_t alloc = MEMORY * throughput;
cryptonight_extra_cpu_init(thr_id, throughput);
cudaMalloc(&d_long_state[thr_id], alloc);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMalloc(&d_ctx_state[thr_id], 208 * throughput); // 52*4 (200 is not aligned 16)
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMalloc(&d_ctx_key1[thr_id], 40 * sizeof(uint32_t) * throughput);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMalloc(&d_ctx_key2[thr_id], 40 * sizeof(uint32_t) * throughput);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMalloc(&d_ctx_text[thr_id], 32 * sizeof(uint32_t) * throughput);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMalloc(&d_ctx_a[thr_id], 4 * sizeof(uint32_t) * throughput);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMalloc(&d_ctx_b[thr_id], 4 * sizeof(uint32_t) * throughput);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
gpu_init_shown = true;
init[thr_id] = true;
}
throughput = cn_blocks*cn_threads;
do
{
const uint32_t Htarg = ptarget[7];
uint32_t resNonces[2] = { UINT32_MAX, UINT32_MAX };
cryptonight_extra_cpu_setData(thr_id, pdata, ptarget);
cryptonight_extra_cpu_prepare(thr_id, throughput, nonce, d_ctx_state[thr_id], d_ctx_a[thr_id], d_ctx_b[thr_id], d_ctx_key1[thr_id], d_ctx_key2[thr_id]);
cryptonight_core_cuda(thr_id, cn_blocks, cn_threads, d_long_state[thr_id], d_ctx_state[thr_id], d_ctx_a[thr_id], d_ctx_b[thr_id], d_ctx_key1[thr_id], d_ctx_key2[thr_id]);
cryptonight_extra_cpu_final(thr_id, throughput, nonce, resNonces, d_ctx_state[thr_id]);
*hashes_done = nonce - first_nonce + throughput;
if(resNonces[0] != UINT32_MAX)
{
uint32_t vhash[8];
uint32_t tempdata[19];
uint32_t *tempnonceptr = (uint32_t*)(((char*)tempdata) + 39);
memcpy(tempdata, pdata, 76);
*tempnonceptr = resNonces[0];
cryptonight_hash(vhash, tempdata, 76);
if(vhash[7] <= Htarg && fulltest(vhash, ptarget))
{
res = 1;
work->nonces[0] = resNonces[0];
work_set_target_ratio(work, vhash);
// second nonce
if(resNonces[1] != UINT32_MAX)
{
*tempnonceptr = resNonces[1];
cryptonight_hash(vhash, tempdata, 76);
if(vhash[7] <= Htarg && fulltest(vhash, ptarget)) {
res++;
work->nonces[1] = resNonces[1];
}
}
goto done;
} else if (vhash[7] > Htarg) {
gpulog(LOG_WARNING, thr_id, "result for nonce %08x does not validate on CPU!", resNonces[0]);
}
}
if ((uint64_t) throughput + nonce >= max_nonce - 127) {
nonce = max_nonce;
break;
}
nonce += throughput;
gpulog(LOG_DEBUG, thr_id, "nonce %08x", nonce);
} while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + nonce);
done:
gpulog(LOG_DEBUG, thr_id, "nonce %08x exit", nonce);
work->valid_nonces = res;
*nonceptr = nonce;
return res;
}
void free_cryptonight(int thr_id)
{
if (!init[thr_id])
return;
cudaFree(d_long_state[thr_id]);
cudaFree(d_ctx_state[thr_id]);
cudaFree(d_ctx_key1[thr_id]);
cudaFree(d_ctx_key2[thr_id]);
cudaFree(d_ctx_text[thr_id]);
cudaFree(d_ctx_a[thr_id]);
cudaFree(d_ctx_b[thr_id]);
cryptonight_extra_cpu_free(thr_id);
cudaDeviceSynchronize();
init[thr_id] = false;
}