You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
493 lines
15 KiB
493 lines
15 KiB
#include <stdio.h> |
|
#include <memory.h> |
|
#include <string.h> |
|
|
|
#include <map> |
|
|
|
#include <openssl/sha.h> |
|
|
|
#ifndef _WIN32 |
|
#include <unistd.h> |
|
#endif |
|
|
|
// include thrust |
|
#include <thrust/version.h> |
|
#include <thrust/remove.h> |
|
#include <thrust/device_vector.h> |
|
#include <thrust/iterator/constant_iterator.h> |
|
|
|
#include "miner.h" |
|
|
|
#include "hefty1.h" |
|
#include "sph/sph_keccak.h" |
|
#include "sph/sph_blake.h" |
|
#include "sph/sph_groestl.h" |
|
|
|
#include "heavy/cuda_hefty1.h" |
|
#include "heavy/cuda_sha256.h" |
|
#include "heavy/cuda_keccak512.h" |
|
#include "heavy/cuda_groestl512.h" |
|
#include "heavy/cuda_blake512.h" |
|
#include "heavy/cuda_combine.h" |
|
|
|
#include "cuda_helper.h" |
|
|
|
extern uint32_t *d_hash2output[8]; |
|
extern uint32_t *d_hash3output[8]; |
|
extern uint32_t *d_hash4output[8]; |
|
extern uint32_t *d_hash5output[8]; |
|
|
|
#define HEAVYCOIN_BLKHDR_SZ 84 |
|
#define MNR_BLKHDR_SZ 80 |
|
|
|
// nonce-array für die threads |
|
uint32_t *d_nonceVector[8]; |
|
|
|
/* Combines top 64-bits from each hash into a single hash */ |
|
static void combine_hashes(uint32_t *out, const uint32_t *hash1, const uint32_t *hash2, const uint32_t *hash3, const uint32_t *hash4) |
|
{ |
|
const uint32_t *hash[4] = { hash1, hash2, hash3, hash4 }; |
|
int bits; |
|
unsigned int i; |
|
uint32_t mask; |
|
unsigned int k; |
|
|
|
/* Transpose first 64 bits of each hash into out */ |
|
memset(out, 0, 32); |
|
bits = 0; |
|
for (i = 7; i >= 6; i--) { |
|
for (mask = 0x80000000; mask; mask >>= 1) { |
|
for (k = 0; k < 4; k++) { |
|
out[(255 - bits)/32] <<= 1; |
|
if ((hash[k][i] & mask) != 0) |
|
out[(255 - bits)/32] |= 1; |
|
bits++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef _MSC_VER |
|
#include <intrin.h> |
|
static uint32_t __inline bitsset( uint32_t x ) |
|
{ |
|
DWORD r = 0; |
|
_BitScanReverse(&r, x); |
|
return r; |
|
} |
|
#else |
|
static uint32_t bitsset( uint32_t x ) |
|
{ |
|
return 31-__builtin_clz(x); |
|
} |
|
#endif |
|
|
|
// Finde das high bit in einem Multiword-Integer. |
|
static int findhighbit(const uint32_t *ptarget, int words) |
|
{ |
|
int i; |
|
int highbit = 0; |
|
for (i=words-1; i >= 0; --i) |
|
{ |
|
if (ptarget[i] != 0) { |
|
highbit = i*32 + bitsset(ptarget[i])+1; |
|
break; |
|
} |
|
} |
|
return highbit; |
|
} |
|
|
|
// Generiere ein Multiword-Integer das die Zahl |
|
// (2 << highbit) - 1 repräsentiert. |
|
static void genmask(uint32_t *ptarget, int words, int highbit) |
|
{ |
|
int i; |
|
for (i=words-1; i >= 0; --i) |
|
{ |
|
if ((i+1)*32 <= highbit) |
|
ptarget[i] = 0xffffffff; |
|
else if (i*32 > highbit) |
|
ptarget[i] = 0x00000000; |
|
else |
|
ptarget[i] = (1 << (highbit-i*32)) - 1; |
|
} |
|
} |
|
|
|
struct check_nonce_for_remove |
|
{ |
|
check_nonce_for_remove(uint64_t target, uint32_t *hashes, uint32_t hashlen, uint32_t startNonce) : |
|
m_target(target), |
|
m_hashes(hashes), |
|
m_hashlen(hashlen), |
|
m_startNonce(startNonce) { } |
|
|
|
__device__ |
|
bool operator()(const uint32_t x) |
|
{ |
|
// Position im Hash Buffer |
|
uint32_t hashIndex = x - m_startNonce; |
|
// Wert des Hashes (als uint64_t) auslesen. |
|
// Steht im 6. und 7. Wort des Hashes (jeder dieser Hashes hat 512 Bits) |
|
uint64_t hashValue = *((uint64_t*)(&m_hashes[m_hashlen*hashIndex + 6])); |
|
// gegen das Target prüfen. Es dürfen nur Bits aus dem Target gesetzt sein. |
|
return (hashValue & m_target) != hashValue; |
|
} |
|
|
|
uint64_t m_target; |
|
uint32_t *m_hashes; |
|
uint32_t m_hashlen; |
|
uint32_t m_startNonce; |
|
}; |
|
|
|
// Zahl der CUDA Devices im System bestimmen |
|
extern "C" int cuda_num_devices() |
|
{ |
|
int version; |
|
cudaError_t err = cudaDriverGetVersion(&version); |
|
if (err != cudaSuccess) |
|
{ |
|
applog(LOG_ERR, "Unable to query CUDA driver version! Is an nVidia driver installed?"); |
|
exit(1); |
|
} |
|
|
|
int maj = version / 1000, min = version % 100; // same as in deviceQuery sample |
|
if (maj < 5 || (maj == 5 && min < 5)) |
|
{ |
|
applog(LOG_ERR, "Driver does not support CUDA %d.%d API! Update your nVidia driver!", 5, 5); |
|
exit(1); |
|
} |
|
|
|
int GPU_N; |
|
err = cudaGetDeviceCount(&GPU_N); |
|
if (err != cudaSuccess) |
|
{ |
|
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?"); |
|
exit(1); |
|
} |
|
return GPU_N; |
|
} |
|
|
|
// Gerätenamen holen |
|
extern char *device_name[8]; |
|
extern int device_map[8]; |
|
|
|
extern "C" void cuda_devicenames() |
|
{ |
|
cudaError_t err; |
|
int GPU_N; |
|
err = cudaGetDeviceCount(&GPU_N); |
|
if (err != cudaSuccess) |
|
{ |
|
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?"); |
|
exit(1); |
|
} |
|
|
|
for (int i=0; i < GPU_N; i++) |
|
{ |
|
cudaDeviceProp props; |
|
cudaGetDeviceProperties(&props, device_map[i]); |
|
|
|
device_name[i] = strdup(props.name); |
|
} |
|
} |
|
|
|
// Can't be called directly in cpu-miner |
|
extern "C" void cuda_devicereset() |
|
{ |
|
cudaDeviceReset(); |
|
} |
|
|
|
static bool substringsearch(const char *haystack, const char *needle, int &match) |
|
{ |
|
int hlen = strlen(haystack); |
|
int nlen = strlen(needle); |
|
for (int i=0; i < hlen; ++i) |
|
{ |
|
if (haystack[i] == ' ') continue; |
|
int j=0, x = 0; |
|
while(j < nlen) |
|
{ |
|
if (haystack[i+x] == ' ') {++x; continue;} |
|
if (needle[j] == ' ') {++j; continue;} |
|
if (needle[j] == '#') return ++match == needle[j+1]-'0'; |
|
if (tolower(haystack[i+x]) != tolower(needle[j])) break; |
|
++j; ++x; |
|
} |
|
if (j == nlen) return true; |
|
} |
|
return false; |
|
} |
|
|
|
// CUDA Gerät nach Namen finden (gibt Geräte-Index zurück oder -1) |
|
extern "C" int cuda_finddevice(char *name) |
|
{ |
|
int num = cuda_num_devices(); |
|
int match = 0; |
|
for (int i=0; i < num; ++i) |
|
{ |
|
cudaDeviceProp props; |
|
if (cudaGetDeviceProperties(&props, i) == cudaSuccess) |
|
if (substringsearch(props.name, name, match)) return i; |
|
} |
|
return -1; |
|
} |
|
|
|
// Zeitsynchronisations-Routine von cudaminer mit CPU sleep |
|
typedef struct { double value[8]; } tsumarray; |
|
cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id) |
|
{ |
|
cudaError_t result = cudaSuccess; |
|
if (situation >= 0) |
|
{ |
|
static std::map<int, tsumarray> tsum; |
|
|
|
double a = 0.95, b = 0.05; |
|
if (tsum.find(situation) == tsum.end()) { a = 0.5; b = 0.5; } // faster initial convergence |
|
|
|
double tsync = 0.0; |
|
double tsleep = 0.95 * tsum[situation].value[thr_id]; |
|
if (cudaStreamQuery(stream) == cudaErrorNotReady) |
|
{ |
|
usleep((useconds_t)(1e6*tsleep)); |
|
struct timeval tv_start, tv_end; |
|
gettimeofday(&tv_start, NULL); |
|
result = cudaStreamSynchronize(stream); |
|
gettimeofday(&tv_end, NULL); |
|
tsync = 1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec); |
|
} |
|
if (tsync >= 0) tsum[situation].value[thr_id] = a * tsum[situation].value[thr_id] + b * (tsleep+tsync); |
|
} |
|
else |
|
result = cudaStreamSynchronize(stream); |
|
return result; |
|
} |
|
|
|
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata, |
|
const uint32_t *ptarget, uint32_t max_nonce, |
|
unsigned long *hashes_done, uint32_t maxvote, int blocklen); |
|
|
|
extern "C" |
|
int scanhash_heavy(int thr_id, uint32_t *pdata, |
|
const uint32_t *ptarget, uint32_t max_nonce, |
|
unsigned long *hashes_done, uint32_t maxvote, int blocklen) |
|
{ |
|
return scanhash_heavy_cpp(thr_id, pdata, |
|
ptarget, max_nonce, hashes_done, maxvote, blocklen); |
|
} |
|
|
|
extern bool opt_benchmark; |
|
|
|
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata, |
|
const uint32_t *ptarget, uint32_t max_nonce, |
|
unsigned long *hashes_done, uint32_t maxvote, int blocklen) |
|
{ |
|
// CUDA will process thousands of threads. |
|
const int throughput = 4096 * 128; |
|
|
|
if (opt_benchmark) |
|
((uint32_t*)ptarget)[7] = 0x000000ff; |
|
|
|
int rc = 0; |
|
uint32_t *hash = NULL; |
|
cudaMallocHost(&hash, throughput*8*sizeof(uint32_t)); |
|
uint32_t *cpu_nonceVector = NULL; |
|
cudaMallocHost(&cpu_nonceVector, throughput*sizeof(uint32_t)); |
|
|
|
int nrmCalls[6]; |
|
memset(nrmCalls, 0, sizeof(int) * 6); |
|
|
|
uint32_t start_nonce = pdata[19]; |
|
|
|
// für jeden Hash ein individuelles Target erstellen basierend |
|
// auf dem höchsten Bit, das in ptarget gesetzt ist. |
|
int highbit = findhighbit(ptarget, 8); |
|
uint32_t target2[2], target3[2], target4[2], target5[2]; |
|
genmask(target2, 2, highbit/4+(((highbit%4)>3)?1:0) ); // SHA256 |
|
genmask(target3, 2, highbit/4+(((highbit%4)>2)?1:0) ); // keccak512 |
|
genmask(target4, 2, highbit/4+(((highbit%4)>1)?1:0) ); // groestl512 |
|
genmask(target5, 2, highbit/4+(((highbit%4)>0)?1:0) ); // blake512 |
|
|
|
static bool init[8] = {0,0,0,0,0,0,0,0}; |
|
if (!init[thr_id]) |
|
{ |
|
hefty_cpu_init(thr_id, throughput); |
|
sha256_cpu_init(thr_id, throughput); |
|
keccak512_cpu_init(thr_id, throughput); |
|
groestl512_cpu_init(thr_id, throughput); |
|
blake512_cpu_init(thr_id, throughput); |
|
combine_cpu_init(thr_id, throughput); |
|
init[thr_id] = true; |
|
cudaMalloc(&d_nonceVector[thr_id], sizeof(uint32_t) * throughput); |
|
} |
|
|
|
if (blocklen == HEAVYCOIN_BLKHDR_SZ) |
|
{ |
|
uint16_t *ext = (uint16_t *)&pdata[20]; |
|
|
|
if (opt_vote > maxvote) { |
|
printf("Warning: Your block reward vote (%hu) exceeds " |
|
"the maxvote reported by the pool (%hu).\n", |
|
opt_vote, maxvote); |
|
} |
|
|
|
if (opt_trust_pool && opt_vote > maxvote) { |
|
printf("Warning: Capping block reward vote to maxvote reported by pool.\n"); |
|
ext[0] = maxvote; |
|
} |
|
else |
|
ext[0] = opt_vote; |
|
} |
|
|
|
// Setze die Blockdaten |
|
hefty_cpu_setBlock(thr_id, throughput, pdata, blocklen); |
|
sha256_cpu_setBlock(pdata, blocklen); |
|
keccak512_cpu_setBlock(pdata, blocklen); |
|
groestl512_cpu_setBlock(pdata, blocklen); |
|
blake512_cpu_setBlock(pdata, blocklen); |
|
|
|
do { |
|
uint32_t i; |
|
|
|
////// Compaction init |
|
thrust::device_ptr<uint32_t> devNoncePtr(d_nonceVector[thr_id]); |
|
thrust::device_ptr<uint32_t> devNoncePtrEnd((d_nonceVector[thr_id]) + throughput); |
|
uint32_t actualNumberOfValuesInNonceVectorGPU = throughput; |
|
|
|
hefty_cpu_hash(thr_id, throughput, pdata[19]); |
|
//cudaThreadSynchronize(); |
|
sha256_cpu_hash(thr_id, throughput, pdata[19]); |
|
//cudaThreadSynchronize(); |
|
|
|
// Hier ist die längste CPU Wartephase. Deshalb ein strategisches MyStreamSynchronize() hier. |
|
MyStreamSynchronize(NULL, 1, thr_id); |
|
|
|
////// Compaction |
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target2), d_hash2output[thr_id], 8, pdata[19])); |
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr); |
|
if(actualNumberOfValuesInNonceVectorGPU == 0) |
|
goto emptyNonceVector; |
|
|
|
keccak512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]); |
|
//cudaThreadSynchronize(); |
|
|
|
////// Compaction |
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target3), d_hash3output[thr_id], 16, pdata[19])); |
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr); |
|
if(actualNumberOfValuesInNonceVectorGPU == 0) |
|
goto emptyNonceVector; |
|
|
|
blake512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]); |
|
//cudaThreadSynchronize(); |
|
|
|
////// Compaction |
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target5), d_hash5output[thr_id], 16, pdata[19])); |
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr); |
|
if(actualNumberOfValuesInNonceVectorGPU == 0) |
|
goto emptyNonceVector; |
|
|
|
groestl512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]); |
|
//cudaThreadSynchronize(); |
|
|
|
////// Compaction |
|
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target4), d_hash4output[thr_id], 16, pdata[19])); |
|
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr); |
|
if(actualNumberOfValuesInNonceVectorGPU == 0) |
|
goto emptyNonceVector; |
|
|
|
// combine |
|
combine_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19], hash); |
|
|
|
// Ergebnisse kopieren |
|
if(actualNumberOfValuesInNonceVectorGPU > 0) |
|
{ |
|
cudaMemcpy(cpu_nonceVector, d_nonceVector[thr_id], sizeof(uint32_t) * actualNumberOfValuesInNonceVectorGPU, cudaMemcpyDeviceToHost); |
|
|
|
for (i=0; i<actualNumberOfValuesInNonceVectorGPU;++i) |
|
{ |
|
uint32_t nonce = cpu_nonceVector[i]; |
|
//uint32_t index = nonce - pdata[19]; |
|
uint32_t index = i; |
|
uint32_t *foundhash = &hash[8*index]; |
|
if (foundhash[7] <= ptarget[7]) { |
|
if (fulltest(foundhash, ptarget)) { |
|
uint32_t verification[8]; |
|
pdata[19] += nonce - pdata[19]; |
|
heavycoin_hash((unsigned char *)verification, (const unsigned char *)pdata, blocklen); |
|
if (memcmp(verification, foundhash, 8*sizeof(uint32_t))) { |
|
applog(LOG_ERR, "hash for nonce=$%08X does not validate on CPU!\n", nonce); |
|
} |
|
else |
|
{ |
|
*hashes_done = pdata[19] - start_nonce; |
|
rc = 1; |
|
goto exit; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
emptyNonceVector: |
|
|
|
pdata[19] += throughput; |
|
|
|
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); |
|
*hashes_done = pdata[19] - start_nonce; |
|
|
|
exit: |
|
cudaFreeHost(cpu_nonceVector); |
|
cudaFreeHost(hash); |
|
return rc; |
|
} |
|
|
|
void heavycoin_hash(unsigned char* output, const unsigned char* input, int len) |
|
{ |
|
unsigned char hash1[32]; |
|
unsigned char hash2[32]; |
|
uint32_t hash3[16]; |
|
uint32_t hash4[16]; |
|
uint32_t hash5[16]; |
|
uint32_t *final; |
|
SHA256_CTX ctx; |
|
sph_keccak512_context keccakCtx; |
|
sph_groestl512_context groestlCtx; |
|
sph_blake512_context blakeCtx; |
|
|
|
HEFTY1(input, len, hash1); |
|
|
|
/* HEFTY1 is new, so take an extra security measure to eliminate |
|
* the possiblity of collisions: |
|
* |
|
* Hash(x) = SHA256(x + HEFTY1(x)) |
|
* |
|
* N.B. '+' is concatenation. |
|
*/ |
|
SHA256_Init(&ctx); |
|
SHA256_Update(&ctx, input, len); |
|
SHA256_Update(&ctx, hash1, sizeof(hash1)); |
|
SHA256_Final(hash2, &ctx); |
|
|
|
/* Additional security: Do not rely on a single cryptographic hash |
|
* function. Instead, combine the outputs of 4 of the most secure |
|
* cryptographic hash functions-- SHA256, KECCAK512, GROESTL512 |
|
* and BLAKE512. |
|
*/ |
|
|
|
sph_keccak512_init(&keccakCtx); |
|
sph_keccak512(&keccakCtx, input, len); |
|
sph_keccak512(&keccakCtx, hash1, sizeof(hash1)); |
|
sph_keccak512_close(&keccakCtx, (void *)&hash3); |
|
|
|
sph_groestl512_init(&groestlCtx); |
|
sph_groestl512(&groestlCtx, input, len); |
|
sph_groestl512(&groestlCtx, hash1, sizeof(hash1)); |
|
sph_groestl512_close(&groestlCtx, (void *)&hash4); |
|
|
|
sph_blake512_init(&blakeCtx); |
|
sph_blake512(&blakeCtx, input, len); |
|
sph_blake512(&blakeCtx, (unsigned char *)&hash1, sizeof(hash1)); |
|
sph_blake512_close(&blakeCtx, (void *)&hash5); |
|
|
|
final = (uint32_t *)output; |
|
combine_hashes(final, (uint32_t *)hash2, hash3, hash4, hash5); |
|
}
|
|
|