You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
342 lines
11 KiB
342 lines
11 KiB
// SM 2.1 variant |
|
|
|
// #include "cuda_helper.h" |
|
|
|
#define MAXWELL_OR_FERMI 0 |
|
#define USE_SHARED 1 |
|
|
|
static unsigned int *d_textures[MAX_GPUS][8]; |
|
|
|
// #define SPH_C32(x) ((uint32_t)(x ## U)) |
|
// #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) |
|
|
|
#define PC32up(j, r) ((uint32_t)((j) + (r))) |
|
#define PC32dn(j, r) 0 |
|
#define QC32up(j, r) 0xFFFFFFFF |
|
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24))) |
|
|
|
#define B32_0(x) __byte_perm(x, 0, 0x4440) |
|
//((x) & 0xFF) |
|
#define B32_1(x) __byte_perm(x, 0, 0x4441) |
|
//(((x) >> 8) & 0xFF) |
|
#define B32_2(x) __byte_perm(x, 0, 0x4442) |
|
//(((x) >> 16) & 0xFF) |
|
#define B32_3(x) __byte_perm(x, 0, 0x4443) |
|
//((x) >> 24) |
|
|
|
// a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5! |
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) |
|
#define T0dn(x) tex1Dfetch(t0dn1, x) |
|
#define T1up(x) tex1Dfetch(t1up1, x) |
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) |
|
#define T2up(x) tex1Dfetch(t2up1, x) |
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) |
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) |
|
#define T3dn(x) tex1Dfetch(t3dn1, x) |
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t0up1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t0dn1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t1up1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t1dn1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t2up1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t2dn1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t3up1; |
|
texture<unsigned int, 1, cudaReadModeElementType> t3dn1; |
|
|
|
extern uint32_t T0up_cpu[]; |
|
extern uint32_t T0dn_cpu[]; |
|
extern uint32_t T1up_cpu[]; |
|
extern uint32_t T1dn_cpu[]; |
|
extern uint32_t T2up_cpu[]; |
|
extern uint32_t T2dn_cpu[]; |
|
extern uint32_t T3up_cpu[]; |
|
extern uint32_t T3dn_cpu[]; |
|
|
|
#if __CUDA_ARCH__ < 300 || defined(_DEBUG) |
|
|
|
__device__ __forceinline__ |
|
void quark_groestl512_perm_P(uint32_t *a, char *mixtabs) |
|
{ |
|
uint32_t t[32]; |
|
|
|
for(int r=0; r<14; r++) |
|
{ |
|
switch(r) { |
|
case 0: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 0); break; |
|
case 1: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 1); break; |
|
case 2: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 2); break; |
|
case 3: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 3); break; |
|
case 4: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 4); break; |
|
case 5: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 5); break; |
|
case 6: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 6); break; |
|
case 7: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 7); break; |
|
case 8: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 8); break; |
|
case 9: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 9); break; |
|
case 10: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 10); break; |
|
case 11: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 11); break; |
|
case 12: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 12); break; |
|
case 13: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 13); break; |
|
} |
|
|
|
// RBTT |
|
#pragma unroll 16 |
|
for(int k=0;k<32;k+=2) { |
|
uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]); |
|
uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]); |
|
uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]); |
|
uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]); |
|
|
|
t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^ |
|
T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 ); |
|
|
|
t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^ |
|
T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 ); |
|
} |
|
|
|
#pragma unroll 32 |
|
for(int k=0; k<32; k++) { |
|
a[k] = t[k]; |
|
} |
|
} |
|
} |
|
|
|
__device__ __forceinline__ |
|
void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs) |
|
{ |
|
for(int r=0; r<14; r++) |
|
{ |
|
uint32_t t[32]; |
|
|
|
switch(r) { |
|
case 0: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 0); a[(k*2)+1] ^= QC32dn(k<< 4, 0);} break; |
|
case 1: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 1); a[(k*2)+1] ^= QC32dn(k<< 4, 1);} break; |
|
case 2: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 2); a[(k*2)+1] ^= QC32dn(k<< 4, 2);} break; |
|
case 3: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 3); a[(k*2)+1] ^= QC32dn(k<< 4, 3);} break; |
|
case 4: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 4); a[(k*2)+1] ^= QC32dn(k<< 4, 4);} break; |
|
case 5: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 5); a[(k*2)+1] ^= QC32dn(k<< 4, 5);} break; |
|
case 6: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 6); a[(k*2)+1] ^= QC32dn(k<< 4, 6);} break; |
|
case 7: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 7); a[(k*2)+1] ^= QC32dn(k<< 4, 7);} break; |
|
case 8: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 8); a[(k*2)+1] ^= QC32dn(k<< 4, 8);} break; |
|
case 9: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 9); a[(k*2)+1] ^= QC32dn(k<< 4, 9);} break; |
|
case 10: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 10); a[(k*2)+1] ^= QC32dn(k<< 4, 10);} break; |
|
case 11: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 11); a[(k*2)+1] ^= QC32dn(k<< 4, 11);} break; |
|
case 12: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 12); a[(k*2)+1] ^= QC32dn(k<< 4, 12);} break; |
|
case 13: |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 13); a[(k*2)+1] ^= QC32dn(k<< 4, 13);} break; |
|
} |
|
|
|
// RBTT |
|
#pragma unroll 16 |
|
for(int k=0;k<32;k+=2) |
|
{ |
|
uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]); |
|
uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]); |
|
uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]); |
|
uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]); |
|
|
|
t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^ |
|
T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 ); |
|
|
|
t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^ |
|
T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 ); |
|
} |
|
#pragma unroll 32 |
|
for(int k=0;k<32;k++) |
|
a[k] = t[k]; |
|
} |
|
} |
|
|
|
#endif |
|
|
|
__global__ |
|
void quark_groestl512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector) |
|
{ |
|
#if __CUDA_ARCH__ < 300 || defined(_DEBUG) |
|
extern __shared__ char mixtabs[]; |
|
|
|
if (threadIdx.x < 256) |
|
{ |
|
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x); |
|
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x); |
|
} |
|
|
|
__syncthreads(); |
|
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
// GROESTL |
|
uint32_t message[32]; |
|
uint32_t state[32]; |
|
|
|
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
|
|
|
off_t hashPosition = nounce - startNounce; |
|
uint32_t *inpHash = &g_hash[hashPosition * 16]; |
|
|
|
#pragma unroll 16 |
|
for(int k=0; k<16; k++) |
|
message[k] = inpHash[k]; |
|
|
|
#pragma unroll 14 |
|
for(int k=1; k<15; k++) |
|
message[k+16] = 0; |
|
|
|
message[16] = 0x80; |
|
message[31] = 0x01000000; |
|
|
|
#pragma unroll 32 |
|
for(int u=0; u<32; u++) |
|
state[u] = message[u]; |
|
state[31] ^= 0x20000; |
|
|
|
// Perm |
|
quark_groestl512_perm_P(state, mixtabs); |
|
state[31] ^= 0x20000; |
|
quark_groestl512_perm_Q(message, mixtabs); |
|
|
|
#pragma unroll 32 |
|
for(int u=0;u<32;u++) state[u] ^= message[u]; |
|
|
|
#pragma unroll 32 |
|
for(int u=0;u<32;u++) message[u] = state[u]; |
|
|
|
quark_groestl512_perm_P(message, mixtabs); |
|
|
|
#pragma unroll 32 |
|
for(int u=0;u<32;u++) state[u] ^= message[u]; |
|
|
|
// Erzeugten Hash rausschreiben |
|
uint32_t *outpHash = &g_hash[hashPosition * 16]; |
|
|
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) outpHash[k] = state[k+16]; |
|
} |
|
#endif |
|
} |
|
|
|
#define texDef(id, texname, texmem, texsource, texsize) { \ |
|
unsigned int *texmem; \ |
|
cudaMalloc(&texmem, texsize); \ |
|
d_textures[thr_id][id] = texmem; \ |
|
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \ |
|
texname.normalized = 0; \ |
|
texname.filterMode = cudaFilterModePoint; \ |
|
texname.addressMode[0] = cudaAddressModeClamp; \ |
|
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \ |
|
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); \ |
|
} \ |
|
} |
|
|
|
__host__ |
|
void quark_groestl512_sm20_init(int thr_id, uint32_t threads) |
|
{ |
|
// Texturen mit obigem Makro initialisieren |
|
texDef(0, t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256); |
|
texDef(1, t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256); |
|
texDef(2, t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256); |
|
texDef(3, t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256); |
|
texDef(4, t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256); |
|
texDef(5, t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256); |
|
texDef(6, t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256); |
|
texDef(7, t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256); |
|
} |
|
|
|
__host__ |
|
void quark_groestl512_sm20_free(int thr_id) |
|
{ |
|
for (int i=0; i<8; i++) |
|
cudaFree(d_textures[thr_id][i]); |
|
} |
|
|
|
__host__ |
|
void quark_groestl512_sm20_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
|
{ |
|
int threadsperblock = 512; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size = 8 * 256 * sizeof(uint32_t); |
|
|
|
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector); |
|
|
|
// MyStreamSynchronize(NULL, order, thr_id); |
|
} |
|
|
|
__host__ |
|
void quark_doublegroestl512_sm20_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
|
{ |
|
int threadsperblock = 512; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size = 8 * 256 * sizeof(uint32_t); |
|
|
|
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector); |
|
quark_groestl512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_hash, d_nonceVector); |
|
|
|
// MyStreamSynchronize(NULL, order, thr_id); |
|
}
|
|
|