You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
738 lines
23 KiB
738 lines
23 KiB
/* Copyright (C) 2013 David G. Andersen. All rights reserved. |
|
* with modifications by Christian Buchner |
|
* |
|
* Use of this code is covered under the Apache 2.0 license, which |
|
* can be found in the file "LICENSE" |
|
*/ |
|
|
|
// attempt V.Volkov style ILP (factor 4) |
|
|
|
#include <map> |
|
|
|
#include <cuda_runtime.h> |
|
#include "miner.h" |
|
|
|
#include "salsa_kernel.h" |
|
#include "titan_kernel.h" |
|
|
|
#define THREADS_PER_WU 4 // four threads per hash |
|
|
|
typedef enum |
|
{ |
|
ANDERSEN, |
|
SIMPLE |
|
} MemoryAccess; |
|
|
|
#if __CUDA_ARCH__ < 320 |
|
// Kepler (Compute 3.0) |
|
#define __ldg(x) (*(x)) |
|
#endif |
|
|
|
// scratchbuf constants (pointers to scratch buffer for each warp, i.e. 32 hashes) |
|
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT]; |
|
|
|
// iteration count N |
|
__constant__ uint32_t c_N; |
|
__constant__ uint32_t c_N_1; // N-1 |
|
// scratch buffer size SCRATCH |
|
__constant__ uint32_t c_SCRATCH; |
|
__constant__ uint32_t c_SCRATCH_WU_PER_WARP; // (SCRATCH * WU_PER_WARP) |
|
__constant__ uint32_t c_SCRATCH_WU_PER_WARP_1; // (SCRATCH * WU_PER_WARP)-1 |
|
|
|
template <int ALGO> __device__ __forceinline__ void block_mixer(uint4 &b, uint4 &bx, const int x1, const int x2, const int x3); |
|
|
|
static __host__ __device__ uint4& operator ^= (uint4& left, const uint4& right) { |
|
left.x ^= right.x; |
|
left.y ^= right.y; |
|
left.z ^= right.z; |
|
left.w ^= right.w; |
|
return left; |
|
} |
|
|
|
static __host__ __device__ uint4& operator += (uint4& left, const uint4& right) { |
|
left.x += right.x; |
|
left.y += right.y; |
|
left.z += right.z; |
|
left.w += right.w; |
|
return left; |
|
} |
|
|
|
static __device__ uint4 __shfl(const uint4 bx, int target_thread) { |
|
return make_uint4(__shfl((int)bx.x, target_thread), __shfl((int)bx.y, target_thread), __shfl((int)bx.z, target_thread), __shfl((int)bx.w, target_thread)); |
|
} |
|
|
|
/* write_keys writes the 8 keys being processed by a warp to the global |
|
* scratchpad. To effectively use memory bandwidth, it performs the writes |
|
* (and reads, for read_keys) 128 bytes at a time per memory location |
|
* by __shfl'ing the 4 entries in bx to the threads in the next-up |
|
* thread group. It then has eight threads together perform uint4 |
|
* (128 bit) writes to the destination region. This seems to make |
|
* quite effective use of memory bandwidth. An approach that spread |
|
* uint32s across more threads was slower because of the increased |
|
* computation it required. |
|
* |
|
* "start" is the loop iteration producing the write - the offset within |
|
* the block's memory. |
|
* |
|
* Internally, this algorithm first __shfl's the 4 bx entries to |
|
* the next up thread group, and then uses a conditional move to |
|
* ensure that odd-numbered thread groups exchange the b/bx ordering |
|
* so that the right parts are written together. |
|
* |
|
* Thanks to Babu for helping design the 128-bit-per-write version. |
|
* |
|
* _direct lets the caller specify the absolute start location instead of |
|
* the relative start location, as an attempt to reduce some recomputation. |
|
*/ |
|
|
|
template <MemoryAccess SCHEME> __device__ __forceinline__ |
|
void write_keys_direct(const uint4 &b, const uint4 &bx, uint32_t start) |
|
{ |
|
uint32_t *scratch = c_V[(blockIdx.x*blockDim.x + threadIdx.x)/32]; |
|
if (SCHEME == ANDERSEN) { |
|
int target_thread = (threadIdx.x + 4)&31; |
|
uint4 t=b, t2=__shfl(bx, target_thread); |
|
int t2_start = __shfl((int)start, target_thread) + 4; |
|
bool c = (threadIdx.x & 0x4); |
|
*((uint4 *)(&scratch[c ? t2_start : start])) = (c ? t2 : t); |
|
*((uint4 *)(&scratch[c ? start : t2_start])) = (c ? t : t2); |
|
} else { |
|
*((uint4 *)(&scratch[start ])) = b; |
|
*((uint4 *)(&scratch[start+16])) = bx; |
|
} |
|
} |
|
|
|
template <MemoryAccess SCHEME> __device__ __forceinline__ |
|
void read_keys_direct(uint4 &b, uint4 &bx, uint32_t start) |
|
{ |
|
uint32_t *scratch = c_V[(blockIdx.x*blockDim.x + threadIdx.x)/32]; |
|
if (SCHEME == ANDERSEN) { |
|
int t2_start = __shfl((int)start, (threadIdx.x + 4)&31) + 4; |
|
bool c = (threadIdx.x & 0x4); |
|
b = __ldg((uint4 *)(&scratch[c ? t2_start : start])); |
|
bx = __ldg((uint4 *)(&scratch[c ? start : t2_start])); |
|
uint4 tmp = b; b = (c ? bx : b); bx = (c ? tmp : bx); |
|
bx = __shfl(bx, (threadIdx.x + 28)&31); |
|
} else { |
|
b = *((uint4 *)(&scratch[start])); |
|
bx = *((uint4 *)(&scratch[start+16])); |
|
} |
|
} |
|
|
|
__device__ __forceinline__ |
|
void primary_order_shuffle(uint32_t b[4], uint32_t bx[4]) { |
|
/* Inner loop shuffle targets */ |
|
int x1 = (threadIdx.x & 0xfc) + (((threadIdx.x & 3)+1)&3); |
|
int x2 = (threadIdx.x & 0xfc) + (((threadIdx.x & 3)+2)&3); |
|
int x3 = (threadIdx.x & 0xfc) + (((threadIdx.x & 3)+3)&3); |
|
|
|
b[3] = __shfl((int)b[3], x1); |
|
b[2] = __shfl((int)b[2], x2); |
|
b[1] = __shfl((int)b[1], x3); |
|
uint32_t tmp = b[1]; b[1] = b[3]; b[3] = tmp; |
|
|
|
bx[3] = __shfl((int)bx[3], x1); |
|
bx[2] = __shfl((int)bx[2], x2); |
|
bx[1] = __shfl((int)bx[1], x3); |
|
tmp = bx[1]; bx[1] = bx[3]; bx[3] = tmp; |
|
} |
|
|
|
__device__ __forceinline__ |
|
void primary_order_shuffle(uint4 &b, uint4 &bx) { |
|
/* Inner loop shuffle targets */ |
|
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 3)+1)&3); |
|
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 3)+2)&3); |
|
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 3)+3)&3); |
|
|
|
b.w = __shfl((int)b.w, x1); |
|
b.z = __shfl((int)b.z, x2); |
|
b.y = __shfl((int)b.y, x3); |
|
uint32_t tmp = b.y; b.y = b.w; b.w = tmp; |
|
|
|
bx.w = __shfl((int)bx.w, x1); |
|
bx.z = __shfl((int)bx.z, x2); |
|
bx.y = __shfl((int)bx.y, x3); |
|
tmp = bx.y; bx.y = bx.w; bx.w = tmp; |
|
} |
|
|
|
/* |
|
* load_key loads a 32*32bit key from a contiguous region of memory in B. |
|
* The input keys are in external order (i.e., 0, 1, 2, 3, ...). |
|
* After loading, each thread has its four b and four bx keys stored |
|
* in internal processing order. |
|
*/ |
|
__device__ __forceinline__ |
|
void load_key_salsa(const uint32_t *B, uint4 &b, uint4 &bx) |
|
{ |
|
uint32_t scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
uint32_t thread_in_block = threadIdx.x & 3U; |
|
uint32_t key_offset = scrypt_block * 32 + (thread_in_block*4); |
|
|
|
// Read in permuted order. Key loads are not our bottleneck right now. |
|
b.x = B[key_offset + (thread_in_block+0) & 3U]; |
|
b.y = B[key_offset + (thread_in_block+1) & 3U]; |
|
b.z = B[key_offset + (thread_in_block+2) & 3U]; |
|
b.w = B[key_offset + (thread_in_block+3) & 3U]; |
|
|
|
key_offset += 16; |
|
bx.x = B[key_offset + (thread_in_block+0) & 3U]; |
|
bx.y = B[key_offset + (thread_in_block+1) & 3U]; |
|
bx.z = B[key_offset + (thread_in_block+2) & 3U]; |
|
bx.w = B[key_offset + (thread_in_block+3) & 3U]; |
|
|
|
primary_order_shuffle(b, bx); |
|
} |
|
|
|
/* |
|
* store_key performs the opposite transform as load_key, taking |
|
* internally-ordered b and bx and storing them into a contiguous |
|
* region of B in external order. |
|
*/ |
|
__device__ __forceinline__ |
|
void store_key_salsa(uint32_t *B, uint4 &b, uint4 &bx) |
|
{ |
|
uint32_t scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
uint32_t thread_in_block = threadIdx.x & 3U; |
|
uint32_t key_offset = scrypt_block * 32 + (thread_in_block*4); |
|
|
|
primary_order_shuffle(b, bx); |
|
|
|
B[key_offset + (thread_in_block+0) & 3U] = b.x; |
|
B[key_offset + (thread_in_block+1) & 3U] = b.y; |
|
B[key_offset + (thread_in_block+2) & 3U] = b.z; |
|
B[key_offset + (thread_in_block+3) & 3U] = b.w; |
|
|
|
key_offset += 16; |
|
B[key_offset + (thread_in_block+0) & 3U] = bx.x; |
|
B[key_offset + (thread_in_block+1) & 3U] = bx.y; |
|
B[key_offset + (thread_in_block+2) & 3U] = bx.z; |
|
B[key_offset + (thread_in_block+3) & 3U] = bx.w; |
|
} |
|
|
|
|
|
/* |
|
* load_key loads a 32*32bit key from a contiguous region of memory in B. |
|
* The input keys are in external order (i.e., 0, 1, 2, 3, ...). |
|
* After loading, each thread has its four b and four bx keys stored |
|
* in internal processing order. |
|
*/ |
|
__device__ __forceinline__ |
|
void load_key_chacha(const uint32_t *B, uint4 &b, uint4 &bx) |
|
{ |
|
uint32_t scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
uint32_t thread_in_block = threadIdx.x & 3U; |
|
uint32_t key_offset = scrypt_block * 32 + thread_in_block; |
|
|
|
// Read in permuted order. Key loads are not our bottleneck right now. |
|
b.x = B[key_offset ]; |
|
b.y = B[key_offset + 4*1]; |
|
b.z = B[key_offset + 4*2]; |
|
b.w = B[key_offset + 4*3]; |
|
|
|
key_offset += 16; |
|
bx.x = B[key_offset ]; |
|
bx.y = B[key_offset + 4 ]; |
|
bx.z = B[key_offset + 4*2]; |
|
bx.w = B[key_offset + 4*3]; |
|
} |
|
|
|
/* |
|
* store_key performs the opposite transform as load_key, taking |
|
* internally-ordered b and bx and storing them into a contiguous |
|
* region of B in external order. |
|
*/ |
|
__device__ __forceinline__ |
|
void store_key_chacha(uint32_t *B, const uint4 &b, const uint4 &bx) |
|
{ |
|
uint32_t scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
uint32_t thread_in_block = threadIdx.x & 3U; |
|
uint32_t key_offset = scrypt_block * 32U + thread_in_block; |
|
|
|
B[key_offset ] = b.x; |
|
B[key_offset + 4 ] = b.y; |
|
B[key_offset + 4*2] = b.z; |
|
B[key_offset + 4*3] = b.w; |
|
|
|
key_offset += 16; |
|
B[key_offset ] = bx.x; |
|
B[key_offset + 4 ] = bx.y; |
|
B[key_offset + 4*2] = bx.z; |
|
B[key_offset + 4*3] = bx.w; |
|
} |
|
|
|
|
|
template <int ALGO> __device__ __forceinline__ |
|
void load_key(const uint32_t *B, uint4 &b, uint4 &bx) |
|
{ |
|
switch(ALGO) { |
|
case A_SCRYPT: load_key_salsa(B, b, bx); break; |
|
case A_SCRYPT_JANE: load_key_chacha(B, b, bx); break; |
|
} |
|
} |
|
|
|
template <int ALGO> __device__ __forceinline__ |
|
void store_key(uint32_t *B, uint4 &b, uint4 &bx) |
|
{ |
|
switch(ALGO) { |
|
case A_SCRYPT: store_key_salsa(B, b, bx); break; |
|
case A_SCRYPT_JANE: store_key_chacha(B, b, bx); break; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* salsa_xor_core (Salsa20/8 cypher) |
|
* The original scrypt called: |
|
* xor_salsa8(&X[0], &X[16]); <-- the "b" loop |
|
* xor_salsa8(&X[16], &X[0]); <-- the "bx" loop |
|
* This version is unrolled to handle both of these loops in a single |
|
* call to avoid unnecessary data movement. |
|
*/ |
|
|
|
#if __CUDA_ARCH__ < 350 |
|
// Kepler (Compute 3.0) |
|
#define XOR_ROTATE_ADD(dst, s1, s2, amt) { uint32_t tmp = s1+s2; dst ^= ((tmp<<amt)|(tmp>>(32-amt))); } |
|
#else |
|
// Kepler (Compute 3.5) |
|
#define ROTL(a, b) __funnelshift_l( a, a, b ); |
|
#define XOR_ROTATE_ADD(dst, s1, s2, amt) dst ^= ROTL(s1+s2, amt); |
|
#endif |
|
|
|
|
|
__device__ __forceinline__ |
|
void salsa_xor_core(uint4 &b, uint4 &bx, const int x1, const int x2, const int x3) |
|
{ |
|
uint4 x; |
|
|
|
b ^= bx; |
|
x = b; |
|
|
|
// Enter in "primary order" (t0 has 0, 4, 8, 12) |
|
// (t1 has 5, 9, 13, 1) |
|
// (t2 has 10, 14, 2, 6) |
|
// (t3 has 15, 3, 7, 11) |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 4; j++) |
|
{ |
|
// Mixing phase of salsa |
|
XOR_ROTATE_ADD(x.y, x.x, x.w, 7); |
|
XOR_ROTATE_ADD(x.z, x.y, x.x, 9); |
|
XOR_ROTATE_ADD(x.w, x.z, x.y, 13); |
|
XOR_ROTATE_ADD(x.x, x.w, x.z, 18); |
|
|
|
/* Transpose rows and columns. */ |
|
/* Unclear if this optimization is needed: These are ordered based |
|
* upon the dependencies needed in the later xors. Compiler should be |
|
* able to figure this out, but might as well give it a hand. */ |
|
x.y = __shfl((int)x.y, x3); |
|
x.w = __shfl((int)x.w, x1); |
|
x.z = __shfl((int)x.z, x2); |
|
|
|
/* The next XOR_ROTATE_ADDS could be written to be a copy-paste of the first, |
|
* but the register targets are rewritten here to swap x[1] and x[3] so that |
|
* they can be directly shuffled to and from our peer threads without |
|
* reassignment. The reverse shuffle then puts them back in the right place. |
|
*/ |
|
|
|
XOR_ROTATE_ADD(x.w, x.x, x.y, 7); |
|
XOR_ROTATE_ADD(x.z, x.w, x.x, 9); |
|
XOR_ROTATE_ADD(x.y, x.z, x.w, 13); |
|
XOR_ROTATE_ADD(x.x, x.y, x.z, 18); |
|
|
|
x.w = __shfl((int)x.w, x3); |
|
x.y = __shfl((int)x.y, x1); |
|
x.z = __shfl((int)x.z, x2); |
|
} |
|
|
|
b += x; |
|
// The next two lines are the beginning of the BX-centric loop iteration |
|
bx ^= b; |
|
x = bx; |
|
|
|
// This is a copy of the same loop above, identical but stripped of comments. |
|
// Duplicated so that we can complete a bx-based loop with fewer register moves. |
|
#pragma unroll 4 |
|
for (int j = 0; j < 4; j++) |
|
{ |
|
XOR_ROTATE_ADD(x.y, x.x, x.w, 7); |
|
XOR_ROTATE_ADD(x.z, x.y, x.x, 9); |
|
XOR_ROTATE_ADD(x.w, x.z, x.y, 13); |
|
XOR_ROTATE_ADD(x.x, x.w, x.z, 18); |
|
|
|
x.y = __shfl((int)x.y, x3); |
|
x.w = __shfl((int)x.w, x1); |
|
x.z = __shfl((int)x.z, x2); |
|
|
|
XOR_ROTATE_ADD(x.w, x.x, x.y, 7); |
|
XOR_ROTATE_ADD(x.z, x.w, x.x, 9); |
|
XOR_ROTATE_ADD(x.y, x.z, x.w, 13); |
|
XOR_ROTATE_ADD(x.x, x.y, x.z, 18); |
|
|
|
x.w = __shfl((int)x.w, x3); |
|
x.y = __shfl((int)x.y, x1); |
|
x.z = __shfl((int)x.z, x2); |
|
} |
|
|
|
// At the end of these iterations, the data is in primary order again. |
|
#undef XOR_ROTATE_ADD |
|
|
|
bx += x; |
|
} |
|
|
|
|
|
/* |
|
* chacha_xor_core (ChaCha20/8 cypher) |
|
* This version is unrolled to handle both of these loops in a single |
|
* call to avoid unnecessary data movement. |
|
* |
|
* load_key and store_key must not use primary order when |
|
* using ChaCha20/8, but rather the basic transposed order |
|
* (referred to as "column mode" below) |
|
*/ |
|
|
|
#if __CUDA_ARCH__ < 320 |
|
// Kepler (Compute 3.0) |
|
#define CHACHA_PRIMITIVE(pt, rt, ps, amt) { uint32_t tmp = rt ^ (pt += ps); rt = ((tmp<<amt)|(tmp>>(32-amt))); } |
|
#else |
|
// Kepler (Compute 3.5) |
|
#define ROTL(a, b) __funnelshift_l( a, a, b ); |
|
#define CHACHA_PRIMITIVE(pt, rt, ps, amt) { pt += ps; rt = ROTL(rt ^ pt,amt); } |
|
#endif |
|
|
|
__device__ __forceinline__ |
|
void chacha_xor_core(uint4 &b, uint4 &bx, const int x1, const int x2, const int x3) |
|
{ |
|
uint4 x = b ^= bx; |
|
|
|
//b ^= bx; |
|
//x = b; |
|
|
|
// Enter in "column" mode (t0 has 0, 4, 8, 12) |
|
// (t1 has 1, 5, 9, 13) |
|
// (t2 has 2, 6, 10, 14) |
|
// (t3 has 3, 7, 11, 15) |
|
|
|
//#pragma unroll |
|
for (int j = 0; j < 4; j++) { |
|
|
|
// Column Mixing phase of chacha |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12) |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7) |
|
|
|
x.y = __shfl((int)x.y, x1); |
|
x.z = __shfl((int)x.z, x2); |
|
x.w = __shfl((int)x.w, x3); |
|
|
|
// Diagonal Mixing phase of chacha |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12) |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7) |
|
|
|
x.y = __shfl((int)x.y, x3); |
|
x.z = __shfl((int)x.z, x2); |
|
x.w = __shfl((int)x.w, x1); |
|
} |
|
|
|
b += x; |
|
// The next two lines are the beginning of the BX-centric loop iteration |
|
bx ^= b; |
|
x = bx; |
|
|
|
//#pragma unroll |
|
for (int j = 0; j < 4; j++) |
|
{ |
|
|
|
// Column Mixing phase of chacha |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12) |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7) |
|
|
|
x.y = __shfl((int)x.y, x1); |
|
x.z = __shfl((int)x.z, x2); |
|
x.w = __shfl((int)x.w, x3); |
|
|
|
// Diagonal Mixing phase of chacha |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12) |
|
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8) |
|
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7) |
|
|
|
x.y = __shfl((int)x.y, x3); |
|
x.z = __shfl((int)x.z, x2); |
|
x.w = __shfl((int)x.w, x1); |
|
} |
|
|
|
#undef CHACHA_PRIMITIVE |
|
|
|
bx += x; |
|
} |
|
|
|
|
|
template <int ALGO> __device__ __forceinline__ |
|
void block_mixer(uint4 &b, uint4 &bx, const int x1, const int x2, const int x3) |
|
{ |
|
switch(ALGO) { |
|
case A_SCRYPT: salsa_xor_core(b, bx, x1, x2, x3); break; |
|
case A_SCRYPT_JANE: chacha_xor_core(b, bx, x1, x2, x3); break; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* The hasher_gen_kernel operates on a group of 1024-bit input keys |
|
* in B, stored as: |
|
* B = { k1B k1Bx k2B k2Bx ... } |
|
* and fills up the scratchpad with the iterative hashes derived from |
|
* those keys: |
|
* scratch { k1h1B k1h1Bx K1h2B K1h2Bx ... K2h1B K2h1Bx K2h2B K2h2Bx ... } |
|
* scratch is 1024 times larger than the input keys B. |
|
* It is extremely important to stream writes effectively into scratch; |
|
* less important to coalesce the reads from B. |
|
* |
|
* Key ordering note: Keys are input from B in "original" order: |
|
* K = {k1, k2, k3, k4, k5, ..., kx15, kx16, kx17, ..., kx31 } |
|
* After inputting into kernel_gen, each component k and kx of the |
|
* key is transmuted into a permuted internal order to make processing faster: |
|
* K = k, kx with: |
|
* k = 0, 4, 8, 12, 5, 9, 13, 1, 10, 14, 2, 6, 15, 3, 7, 11 |
|
* and similarly for kx. |
|
*/ |
|
|
|
template <int ALGO, MemoryAccess SCHEME> __global__ |
|
void titan_scrypt_core_kernelA(const uint32_t *d_idata, int begin, int end) |
|
{ |
|
uint4 b, bx; |
|
|
|
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3); |
|
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3); |
|
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3); |
|
|
|
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
int start = (scrypt_block*c_SCRATCH + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4)) % c_SCRATCH_WU_PER_WARP; |
|
|
|
int i=begin; |
|
|
|
if (i == 0) { |
|
load_key<ALGO>(d_idata, b, bx); |
|
write_keys_direct<SCHEME>(b, bx, start); |
|
++i; |
|
} else read_keys_direct<SCHEME>(b, bx, start+32*(i-1)); |
|
|
|
while (i < end) { |
|
block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
write_keys_direct<SCHEME>(b, bx, start+32*i); |
|
++i; |
|
} |
|
} |
|
|
|
template <int ALGO, MemoryAccess SCHEME> __global__ |
|
void titan_scrypt_core_kernelA_LG(const uint32_t *d_idata, int begin, int end, unsigned int LOOKUP_GAP) |
|
{ |
|
uint4 b, bx; |
|
|
|
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3); |
|
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3); |
|
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3); |
|
|
|
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
int start = (scrypt_block*c_SCRATCH + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4)) % c_SCRATCH_WU_PER_WARP; |
|
|
|
int i=begin; |
|
|
|
if (i == 0) { |
|
load_key<ALGO>(d_idata, b, bx); |
|
write_keys_direct<SCHEME>(b, bx, start); |
|
++i; |
|
} else { |
|
int pos = (i-1)/LOOKUP_GAP, loop = (i-1)-pos*LOOKUP_GAP; |
|
read_keys_direct<SCHEME>(b, bx, start+32*pos); |
|
while(loop--) block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
} |
|
|
|
while (i < end) { |
|
block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
if (i % LOOKUP_GAP == 0) |
|
write_keys_direct<SCHEME>(b, bx, start+32*(i/LOOKUP_GAP)); |
|
++i; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* hasher_hash_kernel runs the second phase of scrypt after the scratch |
|
* buffer is filled with the iterative hashes: It bounces through |
|
* the scratch buffer in pseudorandom order, mixing the key as it goes. |
|
*/ |
|
|
|
template <int ALGO, MemoryAccess SCHEME> __global__ |
|
void titan_scrypt_core_kernelB(uint32_t *d_odata, int begin, int end) |
|
{ |
|
uint4 b, bx; |
|
|
|
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
int start = ((scrypt_block*c_SCRATCH) + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4)) % c_SCRATCH_WU_PER_WARP; |
|
|
|
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3); |
|
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3); |
|
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3); |
|
|
|
if (begin == 0) { |
|
read_keys_direct<SCHEME>(b, bx, start+32*c_N_1); |
|
block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
} else load_key<ALGO>(d_odata, b, bx); |
|
|
|
for (int i = begin; i < end; i++) { |
|
int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1)); |
|
uint4 t, tx; read_keys_direct<SCHEME>(t, tx, start+32*j); |
|
b ^= t; bx ^= tx; |
|
block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
} |
|
|
|
store_key<ALGO>(d_odata, b, bx); |
|
} |
|
|
|
template <int ALGO, MemoryAccess SCHEME> __global__ |
|
void titan_scrypt_core_kernelB_LG(uint32_t *d_odata, int begin, int end, unsigned int LOOKUP_GAP) |
|
{ |
|
uint4 b, bx; |
|
|
|
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU; |
|
int start = ((scrypt_block*c_SCRATCH) + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4)) % c_SCRATCH_WU_PER_WARP; |
|
|
|
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3); |
|
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3); |
|
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3); |
|
|
|
if (begin == 0) { |
|
int pos = c_N_1/LOOKUP_GAP, loop = 1 + (c_N_1-pos*LOOKUP_GAP); |
|
read_keys_direct<SCHEME>(b, bx, start+32*pos); |
|
while(loop--) |
|
block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
} |
|
else |
|
load_key<ALGO>(d_odata, b, bx); |
|
|
|
if (SCHEME == SIMPLE) |
|
{ |
|
// better divergent thread handling submitted by nVidia engineers, but |
|
// supposedly this does not run with the ANDERSEN memory access scheme |
|
int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1)); |
|
int pos = j/LOOKUP_GAP; |
|
int loop = -1; |
|
uint4 t, tx; |
|
|
|
int i = begin; |
|
while(i < end) |
|
{ |
|
if (loop == -1) { |
|
j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1)); |
|
pos = j/LOOKUP_GAP; |
|
loop = j-pos*LOOKUP_GAP; |
|
read_keys_direct<SCHEME>(t, tx, start+32*pos); |
|
} |
|
if (loop == 0) { |
|
b ^= t; bx ^= tx; |
|
t=b;tx=bx; |
|
} |
|
|
|
block_mixer<ALGO>(t, tx, x1, x2, x3); |
|
if (loop == 0) { |
|
b=t;bx=tx; |
|
i++; |
|
} |
|
loop--; |
|
} |
|
} |
|
else |
|
{ |
|
// this is my original implementation, now used with the ANDERSEN |
|
// memory access scheme only. |
|
for (int i = begin; i < end; i++) { |
|
int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1)); |
|
int pos = j/LOOKUP_GAP, loop = j-pos*LOOKUP_GAP; |
|
uint4 t, tx; read_keys_direct<SCHEME>(t, tx, start+32*pos); |
|
while (loop--) |
|
block_mixer<ALGO>(t, tx, x1, x2, x3); |
|
b ^= t; bx ^= tx; |
|
block_mixer<ALGO>(b, bx, x1, x2, x3); |
|
} |
|
} |
|
|
|
store_key<ALGO>(d_odata, b, bx); |
|
} |
|
|
|
|
|
TitanKernel::TitanKernel() : KernelInterface() |
|
{ |
|
} |
|
|
|
void TitanKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V) |
|
{ |
|
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice)); |
|
} |
|
|
|
bool TitanKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, |
|
uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache) |
|
{ |
|
bool success = true; |
|
bool scrypt = IS_SCRYPT(); |
|
bool chacha = IS_SCRYPT_JANE(); |
|
|
|
// make some constants available to kernel, update only initially and when changing |
|
static uint32_t prev_N[MAX_GPUS] = { 0 }; |
|
|
|
if (N != prev_N[thr_id]) { |
|
uint32_t h_N = N; |
|
uint32_t h_N_1 = N-1; |
|
uint32_t h_SCRATCH = SCRATCH; |
|
uint32_t h_SCRATCH_WU_PER_WARP = (SCRATCH * WU_PER_WARP); |
|
uint32_t h_SCRATCH_WU_PER_WARP_1 = (SCRATCH * WU_PER_WARP) - 1; |
|
|
|
cudaMemcpyToSymbolAsync(c_N, &h_N, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); |
|
cudaMemcpyToSymbolAsync(c_N_1, &h_N_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); |
|
cudaMemcpyToSymbolAsync(c_SCRATCH, &h_SCRATCH, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); |
|
cudaMemcpyToSymbolAsync(c_SCRATCH_WU_PER_WARP, &h_SCRATCH_WU_PER_WARP, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); |
|
cudaMemcpyToSymbolAsync(c_SCRATCH_WU_PER_WARP_1, &h_SCRATCH_WU_PER_WARP_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); |
|
|
|
prev_N[thr_id] = N; |
|
} |
|
|
|
// First phase: Sequential writes to scratchpad. |
|
|
|
int batch = device_batchsize[thr_id]; |
|
|
|
unsigned int pos = 0; |
|
do { |
|
if (LOOKUP_GAP == 1) { |
|
if (scrypt) titan_scrypt_core_kernelA<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); |
|
if (chacha) titan_scrypt_core_kernelA<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); |
|
} else { |
|
if (scrypt) titan_scrypt_core_kernelA_LG<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); |
|
if (chacha) titan_scrypt_core_kernelA_LG<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); |
|
} |
|
pos += batch; |
|
|
|
} while (pos < N); |
|
|
|
// Second phase: Random read access from scratchpad. |
|
|
|
pos = 0; |
|
do { |
|
if (LOOKUP_GAP == 1) { |
|
if (scrypt) titan_scrypt_core_kernelB<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); |
|
if (chacha) titan_scrypt_core_kernelB<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); |
|
} else { |
|
if (scrypt) titan_scrypt_core_kernelB_LG<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); |
|
if (chacha) titan_scrypt_core_kernelB_LG<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); |
|
} |
|
pos += batch; |
|
|
|
} while (pos < N); |
|
|
|
return success; |
|
}
|
|
|