880 lines
33 KiB
Plaintext
880 lines
33 KiB
Plaintext
//
|
|
// Contains the autotuning logic and some utility functions.
|
|
// Note that all CUDA kernels have been moved to other .cu files
|
|
//
|
|
|
|
#include <stdio.h>
|
|
#include <map>
|
|
#include <algorithm>
|
|
#include <unistd.h> // usleep
|
|
#include <ctype.h> // tolower
|
|
#include "cuda_helper.h"
|
|
|
|
#include "salsa_kernel.h"
|
|
|
|
#include "titan_kernel.h"
|
|
#include "fermi_kernel.h"
|
|
#include "test_kernel.h"
|
|
#include "nv_kernel.h"
|
|
#include "nv_kernel2.h"
|
|
#include "kepler_kernel.h"
|
|
|
|
#include "miner.h"
|
|
|
|
#if WIN32
|
|
#ifdef _WIN64
|
|
#define _64BIT 1
|
|
#endif
|
|
#else
|
|
#if __x86_64__
|
|
#define _64BIT 1
|
|
#endif
|
|
#endif
|
|
|
|
#if _64BIT
|
|
#define MAXMEM 0x300000000ULL // 12 GB (the largest Kepler)
|
|
#else
|
|
#define MAXMEM 0xFFFFFFFFULL // nearly 4 GB (32 bit limitations)
|
|
#endif
|
|
|
|
// require CUDA 5.5 driver API
|
|
#define DMAJ 5
|
|
#define DMIN 5
|
|
|
|
// define some error checking macros
|
|
#undef checkCudaErrors
|
|
|
|
#if WIN32
|
|
#define DELIMITER '/'
|
|
#else
|
|
#define DELIMITER '/'
|
|
#endif
|
|
#define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ )
|
|
|
|
#define checkCudaErrors(x) \
|
|
{ \
|
|
cudaGetLastError(); \
|
|
x; \
|
|
cudaError_t err = cudaGetLastError(); \
|
|
if (err != cudaSuccess) \
|
|
applog(LOG_ERR, "GPU #%d: Err %d: %s (%s:%d)", device_map[thr_id], err, cudaGetErrorString(err), __FILENAME__, __LINE__); \
|
|
}
|
|
|
|
// some globals containing pointers to device memory (for chunked allocation)
|
|
// [MAX_GPUS] indexes up to MAX_GPUS threads (0...MAX_GPUS-1)
|
|
int MAXWARPS[MAX_GPUS];
|
|
uint32_t* h_V[MAX_GPUS][TOTAL_WARP_LIMIT*64]; // NOTE: the *64 prevents buffer overflow for --keccak
|
|
uint32_t h_V_extra[MAX_GPUS][TOTAL_WARP_LIMIT*64]; // with really large kernel launch configurations
|
|
|
|
KernelInterface *Best_Kernel_Heuristics(cudaDeviceProp *props)
|
|
{
|
|
KernelInterface *kernel = NULL;
|
|
uint64_t N = 1UL << (opt_nfactor+1);
|
|
|
|
if (IS_SCRYPT() || (IS_SCRYPT_JANE() && N <= 8192))
|
|
{
|
|
// high register count kernels (scrypt, low N-factor scrypt-jane)
|
|
if (props->major > 3 || (props->major == 3 && props->minor >= 5))
|
|
kernel = new NV2Kernel(); // we don't want this for Keccak though
|
|
else if (props->major == 3 && props->minor == 0)
|
|
kernel = new NVKernel();
|
|
else if (props->major == 2 || props->major == 1)
|
|
kernel = new FermiKernel();
|
|
}
|
|
else
|
|
{
|
|
// high N-factor scrypt-jane = low registers count kernels
|
|
if (props->major > 3 || (props->major == 3 && props->minor >= 5))
|
|
kernel = new TitanKernel();
|
|
else if (props->major == 3 && props->minor == 0)
|
|
kernel = new KeplerKernel();
|
|
else if (props->major == 2 || props->major == 1)
|
|
kernel = new TestKernel();
|
|
}
|
|
return kernel;
|
|
}
|
|
|
|
|
|
bool validate_config(char *config, int &b, int &w, KernelInterface **kernel = NULL, cudaDeviceProp *props = NULL)
|
|
{
|
|
bool success = false;
|
|
char kernelid = ' ';
|
|
if (config != NULL)
|
|
{
|
|
if (config[0] == 'T' || config[0] == 'K' || config[0] == 'F' || config[0] == 'L' ||
|
|
config[0] == 't' || config[0] == 'k' || config[0] == 'f' ||
|
|
config[0] == 'Z' || config[0] == 'Y' || config[0] == 'X') {
|
|
kernelid = config[0];
|
|
config++;
|
|
}
|
|
|
|
if (config[0] >= '0' && config[0] <= '9')
|
|
if (sscanf(config, "%dx%d", &b, &w) == 2)
|
|
success = true;
|
|
|
|
if (success && kernel != NULL)
|
|
{
|
|
switch (kernelid)
|
|
{
|
|
case 'T': case 'Z': *kernel = new NV2Kernel(); break;
|
|
case 't': *kernel = new TitanKernel(); break;
|
|
case 'K': case 'Y': *kernel = new NVKernel(); break;
|
|
case 'k': *kernel = new KeplerKernel(); break;
|
|
case 'F': case 'L': *kernel = new FermiKernel(); break;
|
|
case 'f': case 'X': *kernel = new TestKernel(); break;
|
|
case ' ': // choose based on device architecture
|
|
*kernel = Best_Kernel_Heuristics(props);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
std::map<int, int> context_blocks;
|
|
std::map<int, int> context_wpb;
|
|
std::map<int, bool> context_concurrent;
|
|
std::map<int, KernelInterface *> context_kernel;
|
|
std::map<int, uint32_t *> context_idata[2];
|
|
std::map<int, uint32_t *> context_odata[2];
|
|
std::map<int, cudaStream_t> context_streams[2];
|
|
std::map<int, uint32_t *> context_X[2];
|
|
std::map<int, uint32_t *> context_H[2];
|
|
std::map<int, cudaEvent_t> context_serialize[2];
|
|
|
|
// for SHA256 hashing on GPU
|
|
std::map<int, uint32_t *> context_tstate[2];
|
|
std::map<int, uint32_t *> context_ostate[2];
|
|
std::map<int, uint32_t *> context_hash[2];
|
|
|
|
int find_optimal_blockcount(int thr_id, KernelInterface* &kernel, bool &concurrent, int &wpb);
|
|
|
|
int cuda_throughput(int thr_id)
|
|
{
|
|
int GRID_BLOCKS, WARPS_PER_BLOCK;
|
|
if (context_blocks.find(thr_id) == context_blocks.end())
|
|
{
|
|
#if 0
|
|
CUcontext ctx;
|
|
cuCtxCreate( &ctx, CU_CTX_SCHED_YIELD, device_map[thr_id] );
|
|
cuCtxSetCurrent(ctx);
|
|
#else
|
|
checkCudaErrors(cudaSetDeviceFlags(cudaDeviceScheduleYield));
|
|
checkCudaErrors(cudaSetDevice(device_map[thr_id]));
|
|
// checkCudaErrors(cudaFree(0));
|
|
#endif
|
|
|
|
KernelInterface *kernel;
|
|
bool concurrent;
|
|
GRID_BLOCKS = find_optimal_blockcount(thr_id, kernel, concurrent, WARPS_PER_BLOCK);
|
|
|
|
if(GRID_BLOCKS == 0)
|
|
return 0;
|
|
|
|
unsigned int THREADS_PER_WU = kernel->threads_per_wu();
|
|
unsigned int mem_size = WU_PER_LAUNCH * sizeof(uint32_t) * 32;
|
|
unsigned int state_size = WU_PER_LAUNCH * sizeof(uint32_t) * 8;
|
|
|
|
// allocate device memory for scrypt_core inputs and outputs
|
|
uint32_t *tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_idata[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_idata[1][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_odata[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_odata[1][thr_id] = tmp;
|
|
|
|
// allocate pinned host memory for scrypt hashes
|
|
checkCudaErrors(cudaHostAlloc((void **) &tmp, state_size, cudaHostAllocDefault)); context_H[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaHostAlloc((void **) &tmp, state_size, cudaHostAllocDefault)); context_H[1][thr_id] = tmp;
|
|
|
|
if (IS_SCRYPT())
|
|
{
|
|
if (parallel < 2)
|
|
{
|
|
// allocate pinned host memory for scrypt_core input/output
|
|
checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[1][thr_id] = tmp;
|
|
}
|
|
else
|
|
{
|
|
// allocate tstate, ostate, scrypt hash device memory
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_tstate[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_tstate[1][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_ostate[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_ostate[1][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[1][thr_id] = tmp;
|
|
}
|
|
}
|
|
else /* if (IS_SCRYPT_JANE()) */
|
|
{
|
|
// allocate pinned host memory for scrypt_core input/output
|
|
checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[1][thr_id] = tmp;
|
|
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[1][thr_id] = tmp;
|
|
}
|
|
|
|
// create two CUDA streams
|
|
cudaStream_t tmp2;
|
|
checkCudaErrors( cudaStreamCreate(&tmp2) ); context_streams[0][thr_id] = tmp2;
|
|
checkCudaErrors( cudaStreamCreate(&tmp2) ); context_streams[1][thr_id] = tmp2;
|
|
|
|
// events used to serialize the kernel launches (we don't want any overlapping of kernels)
|
|
cudaEvent_t tmp4;
|
|
checkCudaErrors(cudaEventCreateWithFlags(&tmp4, cudaEventDisableTiming)); context_serialize[0][thr_id] = tmp4;
|
|
checkCudaErrors(cudaEventCreateWithFlags(&tmp4, cudaEventDisableTiming)); context_serialize[1][thr_id] = tmp4;
|
|
checkCudaErrors(cudaEventRecord(context_serialize[1][thr_id]));
|
|
|
|
context_kernel[thr_id] = kernel;
|
|
context_concurrent[thr_id] = concurrent;
|
|
context_blocks[thr_id] = GRID_BLOCKS;
|
|
context_wpb[thr_id] = WARPS_PER_BLOCK;
|
|
}
|
|
|
|
GRID_BLOCKS = context_blocks[thr_id];
|
|
WARPS_PER_BLOCK = context_wpb[thr_id];
|
|
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
|
|
return WU_PER_LAUNCH;
|
|
}
|
|
|
|
// Beginning of GPU Architecture definitions
|
|
inline int _ConvertSMVer2Cores(int major, int minor)
|
|
{
|
|
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
|
|
typedef struct {
|
|
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
|
|
int Cores;
|
|
} sSMtoCores;
|
|
|
|
sSMtoCores nGpuArchCoresPerSM[] = {
|
|
{ 0x10, 8 }, // Tesla Generation (SM 1.0) G80 class
|
|
{ 0x11, 8 }, // Tesla Generation (SM 1.1) G8x class
|
|
{ 0x12, 8 }, // Tesla Generation (SM 1.2) G9x class
|
|
{ 0x13, 8 }, // Tesla Generation (SM 1.3) GT200 class
|
|
{ 0x20, 32 }, // Fermi Generation (SM 2.0) GF100 class
|
|
{ 0x21, 48 }, // Fermi Generation (SM 2.1) GF10x class
|
|
{ 0x30, 192 }, // Kepler Generation (SM 3.0) GK10x class - GK104 = 1536 cores / 8 SMs
|
|
{ 0x35, 192 }, // Kepler Generation (SM 3.5) GK11x class
|
|
{ 0x50, 128 }, // Maxwell Generation (SM 5.0) GTX750/750Ti
|
|
{ 0x52, 128 }, // Maxwell Second Generation (SM 5.2) GTX980 = 2048 cores / 16 SMs - GTX970 1664 cores / 13 SMs
|
|
{ -1, -1 },
|
|
};
|
|
|
|
int index = 0;
|
|
while (nGpuArchCoresPerSM[index].SM != -1)
|
|
{
|
|
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
|
|
return nGpuArchCoresPerSM[index].Cores;
|
|
}
|
|
index++;
|
|
}
|
|
|
|
// If we don't find the values, we default use the previous one to run properly
|
|
applog(LOG_WARNING, "MapSMtoCores for SM %d.%d is undefined. Default to use %d Cores/SM", major, minor, 128);
|
|
return 128;
|
|
}
|
|
|
|
#ifdef WIN32
|
|
#include <windows.h>
|
|
static int console_width() {
|
|
CONSOLE_SCREEN_BUFFER_INFO csbi;
|
|
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi);
|
|
return csbi.srWindow.Right - csbi.srWindow.Left + 1;
|
|
}
|
|
#else
|
|
static inline int console_width() {
|
|
return 999;
|
|
}
|
|
#endif
|
|
|
|
int find_optimal_blockcount(int thr_id, KernelInterface* &kernel, bool &concurrent, int &WARPS_PER_BLOCK)
|
|
{
|
|
int cw = console_width();
|
|
int optimal_blocks = 0;
|
|
|
|
cudaDeviceProp props;
|
|
checkCudaErrors(cudaGetDeviceProperties(&props, device_map[thr_id]));
|
|
concurrent = (props.concurrentKernels > 0);
|
|
|
|
WARPS_PER_BLOCK = -1;
|
|
|
|
// if not specified, use interactive mode for devices that have the watchdog timer enabled
|
|
if (device_interactive[thr_id] == -1)
|
|
device_interactive[thr_id] = props.kernelExecTimeoutEnabled;
|
|
|
|
// turn off texture cache if not otherwise specified
|
|
if (device_texturecache[thr_id] == -1)
|
|
device_texturecache[thr_id] = 0;
|
|
|
|
// if not otherwise specified or required, turn single memory allocations off as they reduce
|
|
// the amount of memory that we can allocate on Windows Vista, 7 and 8 (WDDM driver model issue)
|
|
if (device_singlememory[thr_id] == -1) device_singlememory[thr_id] = 0;
|
|
|
|
// figure out which kernel implementation to use
|
|
if (!validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK, &kernel, &props)) {
|
|
kernel = NULL;
|
|
if (device_config[thr_id] != NULL) {
|
|
if (device_config[thr_id][0] == 'T' || device_config[thr_id][0] == 'Z')
|
|
kernel = new NV2Kernel();
|
|
else if (device_config[thr_id][0] == 't')
|
|
kernel = new TitanKernel();
|
|
else if (device_config[thr_id][0] == 'K' || device_config[thr_id][0] == 'Y')
|
|
kernel = new NVKernel();
|
|
else if (device_config[thr_id][0] == 'k')
|
|
kernel = new KeplerKernel();
|
|
else if (device_config[thr_id][0] == 'F' || device_config[thr_id][0] == 'L')
|
|
kernel = new FermiKernel();
|
|
else if (device_config[thr_id][0] == 'f' || device_config[thr_id][0] == 'X')
|
|
kernel = new TestKernel();
|
|
}
|
|
if (kernel == NULL) kernel = Best_Kernel_Heuristics(&props);
|
|
}
|
|
|
|
if (kernel->get_major_version() > props.major || kernel->get_major_version() == props.major && kernel->get_minor_version() > props.minor)
|
|
{
|
|
applog(LOG_ERR, "GPU #%d: FATAL: the '%c' kernel requires %d.%d capability!", device_map[thr_id], kernel->get_identifier(), kernel->get_major_version(), kernel->get_minor_version());
|
|
return 0;
|
|
}
|
|
|
|
// set whatever cache configuration and shared memory bank mode the kernel prefers
|
|
checkCudaErrors(cudaDeviceSetCacheConfig(kernel->cache_config()));
|
|
checkCudaErrors(cudaDeviceSetSharedMemConfig(kernel->shared_mem_config()));
|
|
|
|
// some kernels (e.g. Titan) do not support the texture cache
|
|
if (kernel->no_textures() && device_texturecache[thr_id]) {
|
|
applog(LOG_WARNING, "GPU #%d: the '%c' kernel ignores the texture cache argument", device_map[thr_id], kernel->get_identifier());
|
|
device_texturecache[thr_id] = 0;
|
|
}
|
|
|
|
// Texture caching only works with single memory allocation
|
|
if (device_texturecache[thr_id]) device_singlememory[thr_id] = 1;
|
|
|
|
if (kernel->single_memory() && !device_singlememory[thr_id]) {
|
|
applog(LOG_WARNING, "GPU #%d: the '%c' kernel requires single memory allocation", device_map[thr_id], kernel->get_identifier());
|
|
device_singlememory[thr_id] = 1;
|
|
}
|
|
|
|
if (device_lookup_gap[thr_id] == 0) device_lookup_gap[thr_id] = 1;
|
|
if (!kernel->support_lookup_gap() && device_lookup_gap[thr_id] > 1)
|
|
{
|
|
applog(LOG_WARNING, "GPU #%d: the '%c' kernel does not support a lookup gap", device_map[thr_id], kernel->get_identifier());
|
|
device_lookup_gap[thr_id] = 1;
|
|
}
|
|
|
|
if (opt_debug) {
|
|
applog(LOG_INFO, "GPU #%d: interactive: %d, tex-cache: %d%s, single-alloc: %d", device_map[thr_id],
|
|
(device_interactive[thr_id] != 0) ? 1 : 0,
|
|
(device_texturecache[thr_id] != 0) ? device_texturecache[thr_id] : 0, (device_texturecache[thr_id] != 0) ? "D" : "",
|
|
(device_singlememory[thr_id] != 0) ? 1 : 0 );
|
|
}
|
|
|
|
// number of threads collaborating on one work unit (hash)
|
|
unsigned int THREADS_PER_WU = kernel->threads_per_wu();
|
|
unsigned int LOOKUP_GAP = device_lookup_gap[thr_id];
|
|
unsigned int BACKOFF = device_backoff[thr_id];
|
|
unsigned int N = (1 << (opt_nfactor+1));
|
|
double szPerWarp = (double)(SCRATCH * WU_PER_WARP * sizeof(uint32_t));
|
|
//applog(LOG_INFO, "WU_PER_WARP=%u, THREADS_PER_WU=%u, LOOKUP_GAP=%u, BACKOFF=%u, SCRATCH=%u", WU_PER_WARP, THREADS_PER_WU, LOOKUP_GAP, BACKOFF, SCRATCH);
|
|
applog(LOG_INFO, "GPU #%d: %d hashes / %.1f MB per warp.", device_map[thr_id], WU_PER_WARP, szPerWarp / (1024.0 * 1024.0));
|
|
|
|
// compute highest MAXWARPS numbers for kernels allowing cudaBindTexture to succeed
|
|
int MW_1D_4 = 134217728 / (SCRATCH * WU_PER_WARP / 4); // for uint4_t textures
|
|
int MW_1D_2 = 134217728 / (SCRATCH * WU_PER_WARP / 2); // for uint2_t textures
|
|
int MW_1D = kernel->get_texel_width() == 2 ? MW_1D_2 : MW_1D_4;
|
|
|
|
uint32_t *d_V = NULL;
|
|
if (device_singlememory[thr_id])
|
|
{
|
|
// if no launch config was specified, we simply
|
|
// allocate the single largest memory chunk on the device that we can get
|
|
if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK)) {
|
|
MAXWARPS[thr_id] = optimal_blocks * WARPS_PER_BLOCK;
|
|
}
|
|
else {
|
|
// compute no. of warps to allocate the largest number producing a single memory block
|
|
// PROBLEM: one some devices, ALL allocations will fail if the first one failed. This sucks.
|
|
size_t MEM_LIMIT = (size_t)min((unsigned long long)MAXMEM, (unsigned long long)props.totalGlobalMem);
|
|
int warpmax = (int)min((unsigned long long)TOTAL_WARP_LIMIT, (unsigned long long)(MEM_LIMIT / szPerWarp));
|
|
|
|
// run a bisection algorithm for memory allocation (way more reliable than the previous approach)
|
|
int best = 0;
|
|
int warp = (warpmax+1)/2;
|
|
int interval = (warpmax+1)/2;
|
|
while (interval > 0)
|
|
{
|
|
cudaGetLastError(); // clear the error state
|
|
cudaMalloc((void **)&d_V, (size_t)(szPerWarp * warp));
|
|
if (cudaGetLastError() == cudaSuccess) {
|
|
checkCudaErrors(cudaFree(d_V)); d_V = NULL;
|
|
if (warp > best) best = warp;
|
|
if (warp == warpmax) break;
|
|
interval = (interval+1)/2;
|
|
warp += interval;
|
|
if (warp > warpmax) warp = warpmax;
|
|
}
|
|
else
|
|
{
|
|
interval = interval/2;
|
|
warp -= interval;
|
|
if (warp < 1) warp = 1;
|
|
}
|
|
}
|
|
// back off a bit from the largest possible allocation size
|
|
MAXWARPS[thr_id] = ((100-BACKOFF)*best+50)/100;
|
|
}
|
|
|
|
// now allocate a buffer for determined MAXWARPS setting
|
|
cudaGetLastError(); // clear the error state
|
|
cudaMalloc((void **)&d_V, (size_t)SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t));
|
|
if (cudaGetLastError() == cudaSuccess) {
|
|
for (int i=0; i < MAXWARPS[thr_id]; ++i)
|
|
h_V[thr_id][i] = d_V + SCRATCH * WU_PER_WARP * i;
|
|
|
|
if (device_texturecache[thr_id] == 1)
|
|
{
|
|
if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK))
|
|
{
|
|
if ( optimal_blocks * WARPS_PER_BLOCK > MW_1D ) {
|
|
applog(LOG_ERR, "GPU #%d: '%s' exceeds limits for 1D cache. Using 2D cache instead.", device_map[thr_id], device_config[thr_id]);
|
|
device_texturecache[thr_id] = 2;
|
|
}
|
|
}
|
|
// bind linear memory to a 1D texture reference
|
|
if (kernel->get_texel_width() == 2)
|
|
kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * min(MAXWARPS[thr_id],MW_1D_2) * sizeof(uint32_t));
|
|
else
|
|
kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * min(MAXWARPS[thr_id],MW_1D_4) * sizeof(uint32_t));
|
|
}
|
|
else if (device_texturecache[thr_id] == 2)
|
|
{
|
|
// bind pitch linear memory to a 2D texture reference
|
|
if (kernel->get_texel_width() == 2)
|
|
kernel->bindtexture_2D(d_V, SCRATCH/2, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t));
|
|
else
|
|
kernel->bindtexture_2D(d_V, SCRATCH/4, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
applog(LOG_ERR, "GPU #%d: FATAL: Launch config '%s' requires too much memory!", device_map[thr_id], device_config[thr_id]);
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK))
|
|
MAXWARPS[thr_id] = optimal_blocks * WARPS_PER_BLOCK;
|
|
else
|
|
MAXWARPS[thr_id] = TOTAL_WARP_LIMIT;
|
|
|
|
// chunked memory allocation up to device limits
|
|
int warp;
|
|
for (warp = 0; warp < MAXWARPS[thr_id]; ++warp) {
|
|
// work around partition camping problems by adding a random start address offset to each allocation
|
|
h_V_extra[thr_id][warp] = (props.major == 1) ? (16 * (rand()%(16384/16))) : 0;
|
|
cudaGetLastError(); // clear the error state
|
|
cudaMalloc((void **) &h_V[thr_id][warp], (SCRATCH * WU_PER_WARP + h_V_extra[thr_id][warp])*sizeof(uint32_t));
|
|
if (cudaGetLastError() == cudaSuccess) h_V[thr_id][warp] += h_V_extra[thr_id][warp];
|
|
else {
|
|
h_V_extra[thr_id][warp] = 0;
|
|
|
|
// back off by several warp allocations to have some breathing room
|
|
int remove = (BACKOFF*warp+50)/100;
|
|
for (int i=0; warp > 0 && i < remove; ++i) {
|
|
warp--;
|
|
checkCudaErrors(cudaFree(h_V[thr_id][warp]-h_V_extra[thr_id][warp]));
|
|
h_V[thr_id][warp] = NULL; h_V_extra[thr_id][warp] = 0;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
MAXWARPS[thr_id] = warp;
|
|
}
|
|
kernel->set_scratchbuf_constants(MAXWARPS[thr_id], h_V[thr_id]);
|
|
|
|
if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK))
|
|
{
|
|
if (optimal_blocks * WARPS_PER_BLOCK > MAXWARPS[thr_id])
|
|
{
|
|
applog(LOG_ERR, "GPU #%d: FATAL: Given launch config '%s' requires too much memory.", device_map[thr_id], device_config[thr_id]);
|
|
return 0;
|
|
}
|
|
|
|
if (WARPS_PER_BLOCK > kernel->max_warps_per_block())
|
|
{
|
|
applog(LOG_ERR, "GPU #%d: FATAL: Given launch config '%s' exceeds warp limit for '%c' kernel.", device_map[thr_id], device_config[thr_id], kernel->get_identifier());
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (device_config[thr_id] != NULL && strcasecmp("auto", device_config[thr_id]))
|
|
applog(LOG_WARNING, "GPU #%d: Given launch config '%s' does not validate.", device_map[thr_id], device_config[thr_id]);
|
|
|
|
if (opt_autotune)
|
|
{
|
|
applog(LOG_INFO, "GPU #%d: Performing auto-tuning, please wait 2 minutes...", device_map[thr_id]);
|
|
|
|
// allocate device memory
|
|
uint32_t *d_idata = NULL, *d_odata = NULL;
|
|
unsigned int mem_size = MAXWARPS[thr_id] * WU_PER_WARP * sizeof(uint32_t) * 32;
|
|
checkCudaErrors(cudaMalloc((void **) &d_idata, mem_size));
|
|
checkCudaErrors(cudaMalloc((void **) &d_odata, mem_size));
|
|
|
|
// pre-initialize some device memory
|
|
uint32_t *h_idata = (uint32_t*)malloc(mem_size);
|
|
for (unsigned int i=0; i < mem_size/sizeof(uint32_t); ++i) h_idata[i] = i*2654435761UL; // knuth's method
|
|
checkCudaErrors(cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice));
|
|
free(h_idata);
|
|
|
|
double best_hash_sec = 0.0;
|
|
int best_wpb = 0;
|
|
|
|
// auto-tuning loop
|
|
{
|
|
// we want to have enough total warps for half the multiprocessors at least
|
|
// compute highest MAXWARPS number that we can support based on texture cache mode
|
|
int MINTW = props.multiProcessorCount / 2;
|
|
int MAXTW = (device_texturecache[thr_id] == 1) ? min(MAXWARPS[thr_id],MW_1D) : MAXWARPS[thr_id];
|
|
|
|
// we want to have blocks for half the multiprocessors at least
|
|
int MINB = props.multiProcessorCount / 2;
|
|
int MAXB = MAXTW;
|
|
|
|
double tmin = 0.05;
|
|
|
|
applog(LOG_INFO, "GPU #%d: maximum total warps (BxW): %d", (int) device_map[thr_id], MAXTW);
|
|
|
|
for (int GRID_BLOCKS = MINB; !abort_flag && GRID_BLOCKS <= MAXB; ++GRID_BLOCKS)
|
|
{
|
|
double Hash[32+1] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
|
|
for (WARPS_PER_BLOCK = 1; !abort_flag && WARPS_PER_BLOCK <= kernel->max_warps_per_block(); ++WARPS_PER_BLOCK)
|
|
{
|
|
double hash_sec = 0;
|
|
if (GRID_BLOCKS * WARPS_PER_BLOCK >= MINTW &&
|
|
GRID_BLOCKS * WARPS_PER_BLOCK <= MAXTW)
|
|
{
|
|
// setup execution parameters
|
|
dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1);
|
|
dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1);
|
|
|
|
struct timeval tv_start, tv_end;
|
|
double tdelta = 0;
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
gettimeofday(&tv_start, NULL);
|
|
int repeat = 0;
|
|
do // average several measurements for better exactness
|
|
{
|
|
kernel->run_kernel(
|
|
grid, threads, WARPS_PER_BLOCK, thr_id, NULL, d_idata, d_odata, N,
|
|
LOOKUP_GAP, device_interactive[thr_id], true, device_texturecache[thr_id]
|
|
);
|
|
if(cudaDeviceSynchronize() != cudaSuccess)
|
|
break;
|
|
++repeat;
|
|
gettimeofday(&tv_end, NULL);
|
|
// for a better result averaging, measure for at least 50ms (10ms for Keccak)
|
|
} while ((tdelta=(1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec))) < tmin);
|
|
if (cudaGetLastError() != cudaSuccess) continue;
|
|
|
|
tdelta /= repeat; // BUGFIX: this averaging over multiple measurements was missing
|
|
|
|
// for scrypt: in interactive mode only find launch configs where kernel launch times are short enough
|
|
// TODO: instead we could reduce the batchsize parameter to meet the launch time requirement.
|
|
if (IS_SCRYPT() && device_interactive[thr_id]
|
|
&& GRID_BLOCKS > 2*props.multiProcessorCount && tdelta > 1.0/30)
|
|
{
|
|
if (WARPS_PER_BLOCK == 1) goto skip; else goto skip2;
|
|
}
|
|
|
|
hash_sec = (double)WU_PER_LAUNCH / tdelta;
|
|
Hash[WARPS_PER_BLOCK] = hash_sec;
|
|
if (hash_sec > best_hash_sec) {
|
|
optimal_blocks = GRID_BLOCKS;
|
|
best_hash_sec = hash_sec;
|
|
best_wpb = WARPS_PER_BLOCK;
|
|
}
|
|
}
|
|
}
|
|
skip2:
|
|
if (opt_debug) {
|
|
|
|
if (GRID_BLOCKS == MINB) {
|
|
char line[512] = " ";
|
|
for (int i=1; i<=kernel->max_warps_per_block(); ++i) {
|
|
char tmp[16]; sprintf(tmp, i < 10 ? " x%-2d" : " x%-2d ", i);
|
|
strcat(line, tmp);
|
|
if (cw == 80 && (i % 8 == 0 && i != kernel->max_warps_per_block()))
|
|
strcat(line, "\n ");
|
|
}
|
|
applog(LOG_DEBUG, line);
|
|
}
|
|
|
|
char kMGT = ' '; bool flag;
|
|
for (int j=0; j < 4; ++j) {
|
|
flag=false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 1000, i++);
|
|
if (flag) for (int i=1; i<=kernel->max_warps_per_block(); Hash[i] /= 1000, i++);
|
|
else break;
|
|
if (kMGT == ' ') kMGT = 'k';
|
|
else if (kMGT == 'k') kMGT = 'M';
|
|
else if (kMGT == 'M') kMGT = 'G';
|
|
else if (kMGT == 'G') kMGT = 'T';
|
|
}
|
|
const char *format = "%5.4f%c";
|
|
flag = false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 1, i++); if (flag) format = "%5.3f%c";
|
|
flag = false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 10, i++); if (flag) format = "%5.2f%c";
|
|
flag = false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 100, i++); if (flag) format = "%5.1f%c";
|
|
|
|
char line[512]; sprintf(line, "%3d:", GRID_BLOCKS);
|
|
for (int i=1; i<=kernel->max_warps_per_block(); ++i) {
|
|
char tmp[16];
|
|
if (Hash[i]>0)
|
|
sprintf(tmp, format, Hash[i], (i<kernel->max_warps_per_block())?'|':' ');
|
|
else
|
|
sprintf(tmp, " %c", (i<kernel->max_warps_per_block())?'|':' ');
|
|
strcat(line, tmp);
|
|
if (cw == 80 && (i % 8 == 0 && i != kernel->max_warps_per_block()))
|
|
strcat(line, "\n ");
|
|
}
|
|
int n = strlen(line)-1; line[n++] = '|'; line[n++] = ' '; line[n++] = kMGT; line[n++] = '\0';
|
|
strcat(line, "H/s");
|
|
applog(LOG_DEBUG, line);
|
|
}
|
|
}
|
|
skip: ;
|
|
}
|
|
|
|
checkCudaErrors(cudaFree(d_odata));
|
|
checkCudaErrors(cudaFree(d_idata));
|
|
|
|
WARPS_PER_BLOCK = best_wpb;
|
|
applog(LOG_INFO, "GPU #%d: %7.2f hash/s with configuration %c%dx%d", device_map[thr_id], best_hash_sec, kernel->get_identifier(), optimal_blocks, WARPS_PER_BLOCK);
|
|
}
|
|
else
|
|
{
|
|
// Heuristics to find a good kernel launch configuration
|
|
|
|
// base the initial block estimate on the number of multiprocessors
|
|
int device_cores = props.multiProcessorCount * _ConvertSMVer2Cores(props.major, props.minor);
|
|
|
|
// defaults, in case nothing else is chosen below
|
|
optimal_blocks = 4 * device_cores / WU_PER_WARP;
|
|
WARPS_PER_BLOCK = 2;
|
|
|
|
// Based on compute capability, pick a known good block x warp configuration.
|
|
if (props.major >= 3)
|
|
{
|
|
if (props.major == 3 && props.minor == 5) // GK110 (Tesla K20X, K20, GeForce GTX TITAN)
|
|
{
|
|
// TODO: what to do with Titan and Tesla K20(X)?
|
|
// for now, do the same as for GTX 660Ti (2GB)
|
|
optimal_blocks = (int)(optimal_blocks * 0.8809524);
|
|
WARPS_PER_BLOCK = 2;
|
|
}
|
|
else // GK104, GK106, GK107 ...
|
|
{
|
|
if (MAXWARPS[thr_id] > (int)(optimal_blocks * 1.7261905) * 2)
|
|
{
|
|
// this results in 290x2 configuration on GTX 660Ti (3GB)
|
|
// but it requires 3GB memory on the card!
|
|
optimal_blocks = (int)(optimal_blocks * 1.7261905);
|
|
WARPS_PER_BLOCK = 2;
|
|
}
|
|
else
|
|
{
|
|
// this results in 148x2 configuration on GTX 660Ti (2GB)
|
|
optimal_blocks = (int)(optimal_blocks * 0.8809524);
|
|
WARPS_PER_BLOCK = 2;
|
|
}
|
|
}
|
|
}
|
|
// 1st generation Fermi (compute 2.0) GF100, GF110
|
|
else if (props.major == 2 && props.minor == 0)
|
|
{
|
|
// this results in a 60x4 configuration on GTX 570
|
|
optimal_blocks = 4 * device_cores / WU_PER_WARP;
|
|
WARPS_PER_BLOCK = 4;
|
|
}
|
|
// 2nd generation Fermi (compute 2.1) GF104,106,108,114,116
|
|
else if (props.major == 2 && props.minor == 1)
|
|
{
|
|
// this results in a 56x2 configuration on GTX 460
|
|
optimal_blocks = props.multiProcessorCount * 8;
|
|
WARPS_PER_BLOCK = 2;
|
|
}
|
|
|
|
// in case we run out of memory with the automatically chosen configuration,
|
|
// first back off with WARPS_PER_BLOCK, then reduce optimal_blocks.
|
|
if (WARPS_PER_BLOCK==3 && optimal_blocks * WARPS_PER_BLOCK > MAXWARPS[thr_id])
|
|
WARPS_PER_BLOCK = 2;
|
|
while (optimal_blocks > 0 && optimal_blocks * WARPS_PER_BLOCK > MAXWARPS[thr_id])
|
|
optimal_blocks--;
|
|
}
|
|
}
|
|
|
|
applog(LOG_INFO, "GPU #%d: using launch configuration %c%dx%d", device_map[thr_id], kernel->get_identifier(), optimal_blocks, WARPS_PER_BLOCK);
|
|
|
|
if (device_singlememory[thr_id])
|
|
{
|
|
if (MAXWARPS[thr_id] != optimal_blocks * WARPS_PER_BLOCK)
|
|
{
|
|
MAXWARPS[thr_id] = optimal_blocks * WARPS_PER_BLOCK;
|
|
if (device_texturecache[thr_id] == 1)
|
|
kernel->unbindtexture_1D();
|
|
else if (device_texturecache[thr_id] == 2)
|
|
kernel->unbindtexture_2D();
|
|
checkCudaErrors(cudaFree(d_V)); d_V = NULL;
|
|
|
|
cudaGetLastError(); // clear the error state
|
|
cudaMalloc((void **)&d_V, (size_t)SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t));
|
|
if (cudaGetLastError() == cudaSuccess) {
|
|
for (int i=0; i < MAXWARPS[thr_id]; ++i)
|
|
h_V[thr_id][i] = d_V + SCRATCH * WU_PER_WARP * i;
|
|
|
|
if (device_texturecache[thr_id] == 1)
|
|
{
|
|
// bind linear memory to a 1D texture reference
|
|
if (kernel->get_texel_width() == 2)
|
|
kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t));
|
|
else
|
|
kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t));
|
|
}
|
|
else if (device_texturecache[thr_id] == 2)
|
|
{
|
|
// bind pitch linear memory to a 2D texture reference
|
|
if (kernel->get_texel_width() == 2)
|
|
kernel->bindtexture_2D(d_V, SCRATCH/2, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t));
|
|
else
|
|
kernel->bindtexture_2D(d_V, SCRATCH/4, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t));
|
|
}
|
|
|
|
// update pointers to scratch buffer in constant memory after reallocation
|
|
kernel->set_scratchbuf_constants(MAXWARPS[thr_id], h_V[thr_id]);
|
|
}
|
|
else
|
|
{
|
|
applog(LOG_ERR, "GPU #%d: Unable to allocate enough memory for launch config '%s'.", device_map[thr_id], device_config[thr_id]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// back off unnecessary memory allocations to have some breathing room
|
|
while (MAXWARPS[thr_id] > 0 && MAXWARPS[thr_id] > optimal_blocks * WARPS_PER_BLOCK) {
|
|
(MAXWARPS[thr_id])--;
|
|
checkCudaErrors(cudaFree(h_V[thr_id][MAXWARPS[thr_id]]-h_V_extra[thr_id][MAXWARPS[thr_id]]));
|
|
h_V[thr_id][MAXWARPS[thr_id]] = NULL; h_V_extra[thr_id][MAXWARPS[thr_id]] = 0;
|
|
}
|
|
}
|
|
|
|
return optimal_blocks;
|
|
}
|
|
|
|
void cuda_scrypt_HtoD(int thr_id, uint32_t *X, int stream)
|
|
{
|
|
unsigned int GRID_BLOCKS = context_blocks[thr_id];
|
|
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
|
|
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
|
|
unsigned int mem_size = WU_PER_LAUNCH * sizeof(uint32_t) * 32;
|
|
|
|
// copy host memory to device
|
|
cudaMemcpyAsync(context_idata[stream][thr_id], X, mem_size, cudaMemcpyHostToDevice, context_streams[stream][thr_id]);
|
|
}
|
|
|
|
void cuda_scrypt_serialize(int thr_id, int stream)
|
|
{
|
|
// if the device can concurrently execute multiple kernels, then we must
|
|
// wait for the serialization event recorded by the other stream
|
|
if (context_concurrent[thr_id] || device_interactive[thr_id])
|
|
cudaStreamWaitEvent(context_streams[stream][thr_id], context_serialize[(stream+1)&1][thr_id], 0);
|
|
}
|
|
|
|
void cuda_scrypt_done(int thr_id, int stream)
|
|
{
|
|
// record the serialization event in the current stream
|
|
cudaEventRecord(context_serialize[stream][thr_id], context_streams[stream][thr_id]);
|
|
}
|
|
|
|
void cuda_scrypt_flush(int thr_id, int stream)
|
|
{
|
|
// flush the work queue (required for WDDM drivers)
|
|
cudaStreamSynchronize(context_streams[stream][thr_id]);
|
|
}
|
|
|
|
void cuda_scrypt_core(int thr_id, int stream, unsigned int N)
|
|
{
|
|
unsigned int GRID_BLOCKS = context_blocks[thr_id];
|
|
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
|
|
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
|
|
unsigned int LOOKUP_GAP = device_lookup_gap[thr_id];
|
|
|
|
// setup execution parameters
|
|
dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1);
|
|
dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1);
|
|
|
|
context_kernel[thr_id]->run_kernel(grid, threads, WARPS_PER_BLOCK, thr_id,
|
|
context_streams[stream][thr_id], context_idata[stream][thr_id], context_odata[stream][thr_id],
|
|
N, LOOKUP_GAP, device_interactive[thr_id], opt_benchmark, device_texturecache[thr_id]
|
|
);
|
|
}
|
|
|
|
void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA)
|
|
{
|
|
unsigned int GRID_BLOCKS = context_blocks[thr_id];
|
|
unsigned int WARPS_PER_BLOCK = context_wpb[thr_id];
|
|
unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu();
|
|
unsigned int mem_size = WU_PER_LAUNCH * sizeof(uint32_t) * (postSHA ? 8 : 32);
|
|
// copy result from device to host (asynchronously)
|
|
checkCudaErrors(cudaMemcpyAsync(X, postSHA ? context_hash[stream][thr_id] : context_odata[stream][thr_id], mem_size, cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
|
}
|
|
|
|
bool cuda_scrypt_sync(int thr_id, int stream)
|
|
{
|
|
cudaError_t err;
|
|
|
|
if(device_interactive[thr_id] && !opt_benchmark)
|
|
{
|
|
// For devices that also do desktop rendering or compositing, we want to free up some time slots.
|
|
// That requires making a pause in work submission when there is no active task on the GPU,
|
|
// and Device Synchronize ensures that.
|
|
|
|
// this call was replaced by the loop below to workaround the high CPU usage issue
|
|
//err = cudaDeviceSynchronize();
|
|
|
|
while((err = cudaStreamQuery(context_streams[0][thr_id])) == cudaErrorNotReady ||
|
|
(err == cudaSuccess && (err = cudaStreamQuery(context_streams[1][thr_id])) == cudaErrorNotReady))
|
|
usleep(1000);
|
|
|
|
usleep(1000);
|
|
}
|
|
else
|
|
{
|
|
// this call was replaced by the loop below to workaround the high CPU usage issue
|
|
//err = cudaStreamSynchronize(context_streams[stream][thr_id]);
|
|
|
|
while((err = cudaStreamQuery(context_streams[stream][thr_id])) == cudaErrorNotReady)
|
|
usleep(1000);
|
|
}
|
|
|
|
if(err != cudaSuccess)
|
|
{
|
|
applog(LOG_ERR, "GPU #%d: CUDA error `%s` while executing the kernel.", device_map[thr_id], cudaGetErrorString(err));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint32_t* cuda_transferbuffer(int thr_id, int stream)
|
|
{
|
|
return context_X[stream][thr_id];
|
|
}
|
|
|
|
uint32_t* cuda_hashbuffer(int thr_id, int stream)
|
|
{
|
|
return context_H[stream][thr_id];
|
|
}
|