ccminer-gostd-lite/compat/thrust/system/cuda/detail/reduce_intervals.inl
2014-03-18 22:17:40 +01:00

204 lines
6.6 KiB
C++

/*
* Copyright 2008-2012 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thrust/detail/config.h>
#include <thrust/iterator/iterator_traits.h>
#include <thrust/detail/minmax.h>
#include <thrust/system/detail/internal/decompose.h>
#include <thrust/system/cuda/detail/extern_shared_ptr.h>
#include <thrust/system/cuda/detail/block/reduce.h>
#include <thrust/system/cuda/detail/detail/launch_closure.h>
#include <thrust/system/cuda/detail/detail/launch_calculator.h>
namespace thrust
{
namespace system
{
namespace cuda
{
namespace detail
{
template <typename InputIterator,
typename OutputIterator,
typename BinaryFunction,
typename Decomposition,
typename Context>
struct commutative_reduce_intervals_closure
{
InputIterator input;
OutputIterator output;
BinaryFunction binary_op;
Decomposition decomposition;
unsigned int shared_array_size;
typedef Context context_type;
context_type context;
commutative_reduce_intervals_closure(InputIterator input, OutputIterator output, BinaryFunction binary_op, Decomposition decomposition, unsigned int shared_array_size, Context context = Context())
: input(input), output(output), binary_op(binary_op), decomposition(decomposition), shared_array_size(shared_array_size), context(context) {}
__device__ __thrust_forceinline__
void operator()(void)
{
typedef typename thrust::iterator_value<OutputIterator>::type OutputType;
extern_shared_ptr<OutputType> shared_array;
typedef typename Decomposition::index_type index_type;
// this block processes results in [range.begin(), range.end())
thrust::system::detail::internal::index_range<index_type> range = decomposition[context.block_index()];
index_type i = range.begin() + context.thread_index();
input += i;
if (range.size() < context.block_dimension())
{
// compute reduction with the first shared_array_size threads
if (context.thread_index() < thrust::min<index_type>(shared_array_size,range.size()))
{
OutputType sum = *input;
i += shared_array_size;
input += shared_array_size;
while (i < range.end())
{
OutputType val = *input;
sum = binary_op(sum, val);
i += shared_array_size;
input += shared_array_size;
}
shared_array[context.thread_index()] = sum;
}
}
else
{
// compute reduction with all blockDim.x threads
OutputType sum = *input;
i += context.block_dimension();
input += context.block_dimension();
while (i < range.end())
{
OutputType val = *input;
sum = binary_op(sum, val);
i += context.block_dimension();
input += context.block_dimension();
}
// write first shared_array_size values into shared memory
if (context.thread_index() < shared_array_size)
shared_array[context.thread_index()] = sum;
// accumulate remaining values (if any) to shared memory in stages
if (context.block_dimension() > shared_array_size)
{
unsigned int lb = shared_array_size;
unsigned int ub = shared_array_size + lb;
while (lb < context.block_dimension())
{
context.barrier();
if (lb <= context.thread_index() && context.thread_index() < ub)
{
OutputType tmp = shared_array[context.thread_index() - lb];
shared_array[context.thread_index() - lb] = binary_op(tmp, sum);
}
lb += shared_array_size;
ub += shared_array_size;
}
}
}
context.barrier();
block::reduce_n(context, shared_array, thrust::min<index_type>(range.size(), shared_array_size), binary_op);
if (context.thread_index() == 0)
{
output += context.block_index();
*output = shared_array[0];
}
}
};
__THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_BEGIN
template <typename ExecutionPolicy,
typename InputIterator,
typename OutputIterator,
typename BinaryFunction,
typename Decomposition>
void reduce_intervals(execution_policy<ExecutionPolicy> &,
InputIterator input,
OutputIterator output,
BinaryFunction binary_op,
Decomposition decomp)
{
// we're attempting to launch a kernel, assert we're compiling with nvcc
// ========================================================================
// X Note to the user: If you've found this line due to a compiler error, X
// X you need to compile your code using nvcc, rather than g++ or cl.exe X
// ========================================================================
THRUST_STATIC_ASSERT( (thrust::detail::depend_on_instantiation<InputIterator, THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC>::value) );
if (decomp.size() == 0)
return;
// TODO if (decomp.size() > deviceProperties.maxGridSize[0]) throw cuda exception (or handle general case)
typedef detail::blocked_thread_array Context;
typedef commutative_reduce_intervals_closure<InputIterator,OutputIterator,BinaryFunction,Decomposition,Context> Closure;
typedef typename thrust::iterator_value<OutputIterator>::type OutputType;
detail::launch_calculator<Closure> calculator;
thrust::tuple<size_t,size_t,size_t> config = calculator.with_variable_block_size_available_smem();
//size_t max_blocks = thrust::get<0>(config);
size_t block_size = thrust::get<1>(config);
size_t max_memory = thrust::get<2>(config);
// determine shared array size
size_t shared_array_size = thrust::min(max_memory / sizeof(OutputType), block_size);
size_t shared_array_bytes = sizeof(OutputType) * shared_array_size;
// TODO if (shared_array_size < 1) throw cuda exception "insufficient shared memory"
Closure closure(input, output, binary_op, decomp, shared_array_size);
detail::launch_closure(closure, decomp.size(), block_size, shared_array_bytes);
}
__THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_END
} // end namespace detail
} // end namespace cuda
} // end namespace system
} // end namespace thrust