You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
6.7 KiB
237 lines
6.7 KiB
/* Based on djm code */ |
|
|
|
#include <stdint.h> |
|
|
|
#include "miner.h" |
|
#include "cuda_helper.h" |
|
|
|
#include <openssl/sha.h> |
|
|
|
static uint32_t *d_hash[MAX_GPUS] ; |
|
|
|
extern void pluck_setBlockTarget(const void* data, const void *ptarget); |
|
extern void pluck_cpu_init(int thr_id, uint32_t threads, uint32_t *d_outputHash); |
|
extern uint32_t pluck_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, int order); |
|
|
|
extern float tp_coef[MAX_GPUS]; |
|
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
//note, this is 64 bytes |
|
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) |
|
{ |
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
uint32_t x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15; |
|
int i; |
|
|
|
x00 = (B[0] ^= Bx[0]); |
|
x01 = (B[1] ^= Bx[1]); |
|
x02 = (B[2] ^= Bx[2]); |
|
x03 = (B[3] ^= Bx[3]); |
|
x04 = (B[4] ^= Bx[4]); |
|
x05 = (B[5] ^= Bx[5]); |
|
x06 = (B[6] ^= Bx[6]); |
|
x07 = (B[7] ^= Bx[7]); |
|
x08 = (B[8] ^= Bx[8]); |
|
x09 = (B[9] ^= Bx[9]); |
|
x10 = (B[10] ^= Bx[10]); |
|
x11 = (B[11] ^= Bx[11]); |
|
x12 = (B[12] ^= Bx[12]); |
|
x13 = (B[13] ^= Bx[13]); |
|
x14 = (B[14] ^= Bx[14]); |
|
x15 = (B[15] ^= Bx[15]); |
|
for (i = 0; i < 8; i += 2) { |
|
/* Operate on columns. */ |
|
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7); |
|
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7); |
|
|
|
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9); |
|
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9); |
|
|
|
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13); |
|
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13); |
|
|
|
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18); |
|
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18); |
|
|
|
/* Operate on rows. */ |
|
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7); |
|
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7); |
|
|
|
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9); |
|
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9); |
|
|
|
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13); |
|
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13); |
|
|
|
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18); |
|
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18); |
|
} |
|
B[0] += x00; |
|
B[1] += x01; |
|
B[2] += x02; |
|
B[3] += x03; |
|
B[4] += x04; |
|
B[5] += x05; |
|
B[6] += x06; |
|
B[7] += x07; |
|
B[8] += x08; |
|
B[9] += x09; |
|
B[10] += x10; |
|
B[11] += x11; |
|
B[12] += x12; |
|
B[13] += x13; |
|
B[14] += x14; |
|
B[15] += x15; |
|
#undef ROTL |
|
} |
|
|
|
static void sha256_hash(uchar *hash, const uchar *data, int len) |
|
{ |
|
SHA256_CTX ctx; |
|
SHA256_Init(&ctx); |
|
SHA256_Update(&ctx, data, len); |
|
SHA256_Final(hash, &ctx); |
|
} |
|
|
|
// hash exactly 64 bytes (ie, sha256 block size) |
|
static void sha256_hash512(uint32_t *hash, const uint32_t *data) |
|
{ |
|
uint32_t _ALIGN(64) S[16]; |
|
uint32_t _ALIGN(64) T[16]; |
|
uchar _ALIGN(64) E[64] = { 0 }; |
|
int i; |
|
|
|
sha256_init(S); |
|
|
|
for (i = 0; i < 16; i++) |
|
T[i] = be32dec(&data[i]); |
|
sha256_transform(S, T, 0); |
|
|
|
E[3] = 0x80; |
|
E[61] = 0x02; // T[15] = 8 * 64 => 0x200; |
|
sha256_transform(S, (uint32_t*)E, 0); |
|
|
|
for (i = 0; i < 8; i++) |
|
be32enc(&hash[i], S[i]); |
|
} |
|
|
|
#define BLOCK_HEADER_SIZE 80 |
|
void pluckhash(uint32_t *hash, const uint32_t *data, uchar *hashbuffer, const int N) |
|
{ |
|
int size = N * 1024; |
|
sha256_hash(hashbuffer, (uchar*)data, BLOCK_HEADER_SIZE); |
|
memset(&hashbuffer[32], 0, 32); |
|
|
|
for (int i = 64; i < size - 32; i += 32) |
|
{ |
|
uint32_t _ALIGN(64) randseed[16]; |
|
uint32_t _ALIGN(64) randbuffer[16]; |
|
uint32_t _ALIGN(64) joint[16]; |
|
//i-4 because we use integers for all references against this, and we don't want to go 3 bytes over the defined area |
|
//we could use size here, but then it's probable to use 0 as the value in most cases |
|
int randmax = i - 4; |
|
|
|
//setup randbuffer to be an array of random indexes |
|
memcpy(randseed, &hashbuffer[i - 64], 64); |
|
|
|
if (i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64); |
|
else memset(randbuffer, 0, 64); |
|
|
|
xor_salsa8((uint32_t*)randbuffer, (uint32_t*)randseed); |
|
memcpy(joint, &hashbuffer[i - 32], 32); |
|
|
|
//use the last hash value as the seed |
|
for (int j = 32; j < 64; j += 4) |
|
{ |
|
//every other time, change to next random index |
|
//randmax - 32 as otherwise we go beyond memory that's already been written to |
|
uint32_t rand = randbuffer[(j - 32) >> 2] % (randmax - 32); |
|
joint[j >> 2] = *((uint32_t *)&hashbuffer[rand]); |
|
} |
|
|
|
sha256_hash512((uint32_t*)&hashbuffer[i], joint); |
|
|
|
//setup randbuffer to be an array of random indexes |
|
//use last hash value and previous hash value(post-mixing) |
|
memcpy(randseed, &hashbuffer[i - 32], 64); |
|
|
|
if (i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64); |
|
else memset(randbuffer, 0, 64); |
|
|
|
xor_salsa8((uint32_t*)randbuffer, (uint32_t*)randseed); |
|
|
|
//use the last hash value as the seed |
|
for (int j = 0; j < 32; j += 2) |
|
{ |
|
uint32_t rand = randbuffer[j >> 1] % randmax; |
|
*((uint32_t *)(hashbuffer + rand)) = *((uint32_t *)(hashbuffer + j + randmax)); |
|
} |
|
} |
|
|
|
memcpy(hash, hashbuffer, 32); |
|
} |
|
|
|
static bool init[MAX_GPUS] = { 0 }; |
|
|
|
static __thread uchar* scratchbuf = NULL; |
|
|
|
extern "C" int scanhash_pluck(int thr_id, uint32_t *pdata, const uint32_t *ptarget, |
|
uint32_t max_nonce, unsigned long *hashes_done) |
|
{ |
|
const uint32_t first_nonce = pdata[19]; |
|
uint32_t endiandata[20]; |
|
int opt_pluck_n = 128; |
|
|
|
int intensity = is_windows() ? 17 : 19; /* beware > 20 could work and create diff problems later */ |
|
uint32_t throughput = device_intensity(thr_id, __func__, 1U << intensity); |
|
// divide by 128 for this algo which require a lot of memory |
|
throughput = throughput / 128 - 256; |
|
throughput = min(throughput, max_nonce - first_nonce + 1); |
|
|
|
if (opt_benchmark) |
|
((uint32_t*)ptarget)[7] = 0x0000ff; |
|
|
|
if (!init[thr_id]) |
|
{ |
|
cudaSetDevice(device_map[thr_id]); |
|
//cudaDeviceReset(); |
|
//cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); |
|
//cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); |
|
cudaMalloc(&d_hash[thr_id], opt_pluck_n * 1024 * throughput); |
|
|
|
if (!scratchbuf) |
|
scratchbuf = (uchar*) calloc(opt_pluck_n, 1024); |
|
|
|
pluck_cpu_init(thr_id, throughput, d_hash[thr_id]); |
|
init[thr_id] = true; |
|
} |
|
|
|
for (int k = 0; k < 20; k++) |
|
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]); |
|
|
|
pluck_setBlockTarget(endiandata,ptarget); |
|
|
|
do { |
|
uint32_t foundNonce = pluck_cpu_hash(thr_id, throughput, pdata[19], 0); |
|
if (foundNonce != UINT32_MAX) |
|
{ |
|
const uint32_t Htarg = ptarget[7]; |
|
uint32_t vhash64[8]; |
|
be32enc(&endiandata[19], foundNonce); |
|
pluckhash(vhash64, endiandata, scratchbuf, opt_pluck_n); |
|
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { |
|
*hashes_done = pdata[19] - first_nonce + throughput; |
|
pdata[19] = foundNonce; |
|
return 1; |
|
} else { |
|
applog(LOG_INFO, "GPU #%d: result for %08x does not validate on CPU!", thr_id, foundNonce); |
|
} |
|
} |
|
|
|
pdata[19] += throughput; |
|
|
|
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = pdata[19] - first_nonce; |
|
return 0; |
|
}
|
|
|