ccminer-gostd-lite/x17/cuda_x17_sha512.cu
Tanguy Pruvot 81051dd75f x17: restore nonceVector parameters
could be used by new algos
2016-05-10 13:44:01 +02:00

175 lines
6.0 KiB
Plaintext

/*
* sha-512 cuda kernel implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2014 djm34
* 2016 tpruvot
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*/
#include <stdio.h>
#define NEED_HASH_512
#include "cuda_helper.h"
#define SWAP64(u64) cuda_swab64(u64)
static __constant__ uint64_t c_WB[80];
static const uint64_t WB[80] = {
0x428A2F98D728AE22, 0x7137449123EF65CD, 0xB5C0FBCFEC4D3B2F, 0xE9B5DBA58189DBBC,
0x3956C25BF348B538, 0x59F111F1B605D019, 0x923F82A4AF194F9B, 0xAB1C5ED5DA6D8118,
0xD807AA98A3030242, 0x12835B0145706FBE, 0x243185BE4EE4B28C, 0x550C7DC3D5FFB4E2,
0x72BE5D74F27B896F, 0x80DEB1FE3B1696B1, 0x9BDC06A725C71235, 0xC19BF174CF692694,
0xE49B69C19EF14AD2, 0xEFBE4786384F25E3, 0x0FC19DC68B8CD5B5, 0x240CA1CC77AC9C65,
0x2DE92C6F592B0275, 0x4A7484AA6EA6E483, 0x5CB0A9DCBD41FBD4, 0x76F988DA831153B5,
0x983E5152EE66DFAB, 0xA831C66D2DB43210, 0xB00327C898FB213F, 0xBF597FC7BEEF0EE4,
0xC6E00BF33DA88FC2, 0xD5A79147930AA725, 0x06CA6351E003826F, 0x142929670A0E6E70,
0x27B70A8546D22FFC, 0x2E1B21385C26C926, 0x4D2C6DFC5AC42AED, 0x53380D139D95B3DF,
0x650A73548BAF63DE, 0x766A0ABB3C77B2A8, 0x81C2C92E47EDAEE6, 0x92722C851482353B,
0xA2BFE8A14CF10364, 0xA81A664BBC423001, 0xC24B8B70D0F89791, 0xC76C51A30654BE30,
0xD192E819D6EF5218, 0xD69906245565A910, 0xF40E35855771202A, 0x106AA07032BBD1B8,
0x19A4C116B8D2D0C8, 0x1E376C085141AB53, 0x2748774CDF8EEB99, 0x34B0BCB5E19B48A8,
0x391C0CB3C5C95A63, 0x4ED8AA4AE3418ACB, 0x5B9CCA4F7763E373, 0x682E6FF3D6B2B8A3,
0x748F82EE5DEFB2FC, 0x78A5636F43172F60, 0x84C87814A1F0AB72, 0x8CC702081A6439EC,
0x90BEFFFA23631E28, 0xA4506CEBDE82BDE9, 0xBEF9A3F7B2C67915, 0xC67178F2E372532B,
0xCA273ECEEA26619C, 0xD186B8C721C0C207, 0xEADA7DD6CDE0EB1E, 0xF57D4F7FEE6ED178,
0x06F067AA72176FBA, 0x0A637DC5A2C898A6, 0x113F9804BEF90DAE, 0x1B710B35131C471B,
0x28DB77F523047D84, 0x32CAAB7B40C72493, 0x3C9EBE0A15C9BEBC, 0x431D67C49C100D4C,
0x4CC5D4BECB3E42B6, 0x597F299CFC657E2A, 0x5FCB6FAB3AD6FAEC, 0x6C44198C4A475817
};
#define BSG5_0(x) xor3(ROTR64(x,28), ROTR64(x,34), ROTR64(x,39))
#define SSG5_0(x) xor3(ROTR64(x, 1), ROTR64(x ,8), shr_t64(x,7))
#define SSG5_1(x) xor3(ROTR64(x,19), ROTR64(x,61), shr_t64(x,6))
//#define MAJ(X, Y, Z) (((X) & (Y)) | (((X) | (Y)) & (Z)))
#define MAJ(x, y, z) andor(x,y,z)
__device__ __forceinline__
uint64_t Tone(uint64_t* K, uint64_t* r, uint64_t* W, const int a, const int i)
{
//asm("// TONE \n");
const uint64_t e = r[(a+4) & 7];
uint64_t BSG51 = xor3(ROTR64(e, 14), ROTR64(e, 18), ROTR64(e, 41));
const uint64_t f = r[(a+5) & 7];
const uint64_t g = r[(a+6) & 7];
uint64_t CHl = ((f ^ g) & e) ^ g; // xandx(e, f, g);
return (r[(a+7) & 7] + BSG51 + CHl + K[i] + W[i]);
}
#define SHA3_STEP(K, r, W, ord, i) { \
const int a = (8 - ord) & 7; \
uint64_t T1 = Tone(K, r, W, a, i); \
r[(a+3) & 7] += T1; \
uint64_t T2 = (BSG5_0(r[a]) + MAJ(r[a], r[(a+1) & 7], r[(a+2) & 7])); \
r[(a+7) & 7] = T1 + T2; \
}
__global__
/*__launch_bounds__(256, 4)*/
void x17_sha512_gpu_hash_64(const uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
uint64_t hashPosition = nounce - startNounce;
uint64_t *pHash = &g_hash[hashPosition*8U];
uint64_t W[80];
#pragma unroll
for (int i = 0; i < 8; i ++) {
W[i] = SWAP64(pHash[i]);
}
W[8] = 0x8000000000000000;
#pragma unroll 69
for (int i = 9; i<78; i++) {
W[i] = 0U;
}
W[15] = 0x0000000000000200;
#pragma unroll 64
for (int i = 16; i < 80; i ++) {
W[i] = SSG5_1(W[i-2]) + W[i-7];
W[i] += SSG5_0(W[i-15]) + W[i-16];
}
const uint64_t IV512[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
uint64_t r[8];
#pragma unroll
for (int i = 0; i < 8; i ++) {
r[i] = IV512[i];
}
#if CUDART_VERSION >= 7050
#pragma unroll 10
#endif
for (int i = 0; i < 80; i += 8) {
#pragma unroll
for (int ord = 0; ord < 8; ord++) {
SHA3_STEP(c_WB, r, W, ord, i+ord);
}
}
#pragma unroll
for (int u = 0; u < 4; u ++) {
pHash[u] = SWAP64(r[u] + IV512[u]);
}
#ifdef NEED_HASH_512
#pragma unroll
for (int u = 4; u < 8; u ++) {
pHash[u] = SWAP64(r[u] + IV512[u]);
}
#endif
}
}
__host__
void x17_sha512_cpu_init(int thr_id, uint32_t threads)
{
cudaMemcpyToSymbol(c_WB, WB, 80*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
}
__host__
void x17_sha512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const uint32_t threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
x17_sha512_gpu_hash_64 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
//MyStreamSynchronize(NULL, order, thr_id);
}