You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
4.9 KiB
143 lines
4.9 KiB
#pragma once |
|
#include <cuda_runtime.h> |
|
#include <miner.h> |
|
|
|
#ifdef __INTELLISENSE__ |
|
/* avoid red underlining */ |
|
#define __CUDA_ARCH__ 520 |
|
struct uint3 { |
|
unsigned int x, y, z; |
|
}; |
|
struct uint3 threadIdx; |
|
struct uint3 blockIdx; |
|
struct uint3 blockDim; |
|
#define atomicExch(p,y) (*p) = y |
|
#define __funnelshift_r(a,b,c) 1 |
|
#define __syncthreads() |
|
#define __threadfence_block() |
|
#define asm(x) |
|
#define __shfl(a,b,c) 1 |
|
#define __umul64hi(a,b) a*b |
|
#endif |
|
|
|
#define MEMORY (1UL << 20) /* 1 MiB - 1048576 */ |
|
#define ITER (1UL << 19) /* 512k */ |
|
#define E2I_MASK1 0xFFFF0 /* MEMORY / AES_BLOCK_SIZE - 1 = 0xFFFF */ |
|
#define E2I_MASK2 0x3FFFC /* 0xFFFF0 >> 2 */ |
|
|
|
#define AES_BLOCK_SIZE 16 |
|
#define AES_KEY_SIZE 32 |
|
#define INIT_SIZE_BLK 8 |
|
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128 B |
|
|
|
#define AES_RKEY_LEN 4 |
|
#define AES_COL_LEN 4 |
|
#define AES_ROUND_BASE 7 |
|
|
|
#ifndef HASH_SIZE |
|
#define HASH_SIZE 32 |
|
#endif |
|
|
|
#ifndef HASH_DATA_AREA |
|
#define HASH_DATA_AREA 136 |
|
#endif |
|
|
|
#define hi_dword(x) (x >> 32) |
|
#define lo_dword(x) (x & 0xFFFFFFFF) |
|
|
|
#define C32(x) ((uint32_t)(x ## U)) |
|
#define T32(x) ((x) & C32(0xFFFFFFFF)) |
|
|
|
#ifndef ROTL64 |
|
#if __CUDA_ARCH__ >= 350 |
|
__forceinline__ __device__ uint64_t cuda_ROTL64(const uint64_t value, const int offset) { |
|
uint2 result; |
|
if(offset >= 32) { |
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
|
} else { |
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
|
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
|
} |
|
return __double_as_longlong(__hiloint2double(result.y, result.x)); |
|
} |
|
#define ROTL64(x, n) (cuda_ROTL64(x, n)) |
|
#else |
|
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) |
|
#endif |
|
#endif |
|
|
|
#ifndef ROTL32 |
|
#if __CUDA_ARCH__ < 350 |
|
#define ROTL32(x, n) T32(((x) << (n)) | ((x) >> (32 - (n)))) |
|
#else |
|
#define ROTL32(x, n) __funnelshift_l( (x), (x), (n) ) |
|
#endif |
|
#endif |
|
|
|
#ifndef ROTR32 |
|
#if __CUDA_ARCH__ < 350 |
|
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) |
|
#else |
|
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) |
|
#endif |
|
#endif |
|
|
|
#define MEMSET8(dst,what,cnt) { \ |
|
int i_memset8; \ |
|
uint64_t *out_memset8 = (uint64_t *)(dst); \ |
|
for( i_memset8 = 0; i_memset8 < cnt; i_memset8++ ) \ |
|
out_memset8[i_memset8] = (what); } |
|
|
|
#define MEMSET4(dst,what,cnt) { \ |
|
int i_memset4; \ |
|
uint32_t *out_memset4 = (uint32_t *)(dst); \ |
|
for( i_memset4 = 0; i_memset4 < cnt; i_memset4++ ) \ |
|
out_memset4[i_memset4] = (what); } |
|
|
|
#define MEMCPY8(dst,src,cnt) { \ |
|
int i_memcpy8; \ |
|
uint64_t *in_memcpy8 = (uint64_t *)(src); \ |
|
uint64_t *out_memcpy8 = (uint64_t *)(dst); \ |
|
for( i_memcpy8 = 0; i_memcpy8 < cnt; i_memcpy8++ ) \ |
|
out_memcpy8[i_memcpy8] = in_memcpy8[i_memcpy8]; } |
|
|
|
#define MEMCPY4(dst,src,cnt) { \ |
|
int i_memcpy4; \ |
|
uint32_t *in_memcpy4 = (uint32_t *)(src); \ |
|
uint32_t *out_memcpy4 = (uint32_t *)(dst); \ |
|
for( i_memcpy4 = 0; i_memcpy4 < cnt; i_memcpy4++ ) \ |
|
out_memcpy4[i_memcpy4] = in_memcpy4[i_memcpy4]; } |
|
|
|
#define XOR_BLOCKS_DST(x,y,z) { \ |
|
((uint64_t *)z)[0] = ((uint64_t *)(x))[0] ^ ((uint64_t *)(y))[0]; \ |
|
((uint64_t *)z)[1] = ((uint64_t *)(x))[1] ^ ((uint64_t *)(y))[1]; } |
|
|
|
union hash_state { |
|
uint8_t b[200]; |
|
uint64_t w[25]; |
|
}; |
|
|
|
union cn_slow_hash_state { |
|
union hash_state hs; |
|
struct { |
|
uint8_t k[64]; |
|
uint8_t init[INIT_SIZE_BYTE]; |
|
}; |
|
}; |
|
|
|
static inline void exit_if_cudaerror(int thr_id, const char *src, int line) |
|
{ |
|
cudaError_t err = cudaGetLastError(); |
|
if(err != cudaSuccess) { |
|
gpulog(LOG_ERR, thr_id, "%s %s line %d", cudaGetErrorString(err), src, line); |
|
exit(1); |
|
} |
|
} |
|
void cryptolight_core_cpu_hash(int thr_id, int blocks, int threads, uint32_t *d_long_state, uint64_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2); |
|
|
|
void cryptonight_extra_cpu_setData(int thr_id, const void *data, const void *pTargetIn); |
|
void cryptonight_extra_cpu_init(int thr_id, uint32_t threads); |
|
void cryptonight_extra_cpu_free(int thr_id); |
|
void cryptonight_extra_cpu_prepare(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2); |
|
void cryptonight_extra_cpu_final(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *nonce, uint64_t *d_ctx_state);
|
|
|