GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

274 lines
7.8 KiB

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include "cryptonight.h"
#define LONG_SHL_IDX 19
#ifdef WIN32
// to prevent ui freeze
static __thread int cn_bfactor = 8;
static __thread int cn_bsleep = 100;
#else
static __thread int cn_bfactor = 0;
static __thread int cn_bsleep = 0;
#endif
#include "cn_aes.cuh"
#define MUL_SUM_XOR_DST(a,c,dst) { \
uint64_t hi, lo = cuda_mul128(((uint64_t *)a)[0], ((uint64_t *)dst)[0], &hi) + ((uint64_t *)c)[1]; \
hi += ((uint64_t *)c)[0]; \
((uint64_t *)c)[0] = ((uint64_t *)dst)[0] ^ hi; \
((uint64_t *)c)[1] = ((uint64_t *)dst)[1] ^ lo; \
((uint64_t *)dst)[0] = hi; \
((uint64_t *)dst)[1] = lo; }
__device__ __forceinline__ uint64_t cuda_mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi)
{
*product_hi = __umul64hi(multiplier, multiplicand);
return(multiplier * multiplicand);
}
__global__
void cryptonight_core_gpu_phase1(int threads, uint32_t * __restrict__ long_state, uint32_t * __restrict__ ctx_state, uint32_t * __restrict__ ctx_key1)
{
__shared__ uint32_t sharedMemory[1024];
cn_aes_gpu_init(sharedMemory);
const int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3;
const int sub = (threadIdx.x & 7) << 2;
if(thread < threads)
{
uint32_t key[40], text[4];
MEMCPY8(key, ctx_key1 + thread * 40, 20);
MEMCPY8(text, ctx_state + thread * 50 + sub + 16, 2);
__syncthreads();
for(int i = 0; i < 0x80000; i += 32)
{
cn_aes_pseudo_round_mut(sharedMemory, text, key);
MEMCPY8(&long_state[(thread << 19) + sub + i], text, 2);
}
}
}
__global__
void cryptonight_core_gpu_phase2(const int threads, const int bfactor, const int partidx, uint32_t * d_long_state, uint32_t * d_ctx_a, uint32_t * d_ctx_b)
{
__shared__ uint32_t sharedMemory[1024];
cn_aes_gpu_init(sharedMemory);
__syncthreads();
#if 0 && __CUDA_ARCH__ >= 300
const int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
const int sub = threadIdx.x & 3;
if(thread < threads)
{
const int batchsize = ITER >> (2 + bfactor);
const int start = partidx * batchsize;
const int end = start + batchsize;
uint32_t * __restrict__ long_state = &d_long_state[thread << 19];
uint32_t * __restrict__ ctx_a = d_ctx_a + thread * 4;
uint32_t * __restrict__ ctx_b = d_ctx_b + thread * 4;
uint32_t a, b, c, x[4];
uint32_t t1[4], t2[4], res;
uint64_t reshi, reslo;
int j;
a = ctx_a[sub];
b = ctx_b[sub];
#pragma unroll 8
for(int i = start; i < end; ++i)
{
//j = ((uint32_t *)a)[0] & 0x1FFFF0;
j = (__shfl((int)a, 0, 4) & E2I_MASK1) >> 2;
//cn_aes_single_round(sharedMemory, &long_state[j], c, a);
x[0] = long_state[j + sub];
x[1] = __shfl((int)x[0], sub + 1, 4);
x[2] = __shfl((int)x[0], sub + 2, 4);
x[3] = __shfl((int)x[0], sub + 3, 4);
c = a ^
t_fn0(x[0] & 0xff) ^
t_fn1((x[1] >> 8) & 0xff) ^
t_fn2((x[2] >> 16) & 0xff) ^
t_fn3((x[3] >> 24) & 0xff);
//XOR_BLOCKS_DST(c, b, &long_state[j]);
long_state[j + sub] = c ^ b;
//MUL_SUM_XOR_DST(c, a, &long_state[((uint32_t *)c)[0] & 0x1FFFF0]);
j = (__shfl((int)c, 0, 4) & E2I_MASK1) >> 2;
#pragma unroll
for(int k = 0; k < 2; k++)
t1[k] = __shfl((int)c, k, 4);
#pragma unroll
for(int k = 0; k < 4; k++)
t2[k] = __shfl((int)a, k, 4);
asm(
"mad.lo.u64 %0, %2, %3, %4;\n\t"
"mad.hi.u64 %1, %2, %3, %5;\n\t"
: "=l"(reslo), "=l"(reshi)
: "l"(((uint64_t *)t1)[0]), "l"(((uint64_t *)long_state)[j >> 1]), "l"(((uint64_t *)t2)[1]), "l"(((uint64_t *)t2)[0]));
res = (sub & 2 ? reslo : reshi) >> (sub & 1 ? 32 : 0);
a = long_state[j + sub] ^ res;
long_state[j + sub] = res;
//j = ((uint32_t *)a)[0] & 0x1FFFF0;
j = (__shfl((int)a, 0, 4) & E2I_MASK1) >> 2;
//cn_aes_single_round(sharedMemory, &long_state[j], b, a);
x[0] = long_state[j + sub];
x[1] = __shfl((int)x[0], sub + 1, 4);
x[2] = __shfl((int)x[0], sub + 2, 4);
x[3] = __shfl((int)x[0], sub + 3, 4);
b = a ^
t_fn0(x[0] & 0xff) ^
t_fn1((x[1] >> 8) & 0xff) ^
t_fn2((x[2] >> 16) & 0xff) ^
t_fn3((x[3] >> 24) & 0xff);
//XOR_BLOCKS_DST(b, c, &long_state[j]);
long_state[j + sub] = c ^ b;
//MUL_SUM_XOR_DST(b, a, &long_state[((uint32_t *)b)[0] & 0x1FFFF0]);
j = (__shfl((int)b, 0, 4) & E2I_MASK1) >> 2;
#pragma unroll
for(int k = 0; k < 2; k++)
t1[k] = __shfl((int)b, k, 4);
#pragma unroll
for(int k = 0; k < 4; k++)
t2[k] = __shfl((int)a, k, 4);
asm(
"mad.lo.u64 %0, %2, %3, %4;\n\t"
"mad.hi.u64 %1, %2, %3, %5;\n\t"
: "=l"(reslo), "=l"(reshi)
: "l"(((uint64_t *)t1)[0]), "l"(((uint64_t *)long_state)[j >> 1]), "l"(((uint64_t *)t2)[1]), "l"(((uint64_t *)t2)[0]));
res = (sub & 2 ? reslo : reshi) >> (sub & 1 ? 32 : 0);
a = long_state[j + sub] ^ res;
long_state[j + sub] = res;
}
if(bfactor > 0)
{
ctx_a[sub] = a;
ctx_b[sub] = b;
}
}
#else // __CUDA_ARCH__ < 300
const int thread = blockDim.x * blockIdx.x + threadIdx.x;
if(thread < threads)
{
const int batchsize = ITER >> (2 + bfactor);
const int start = partidx * batchsize;
const int end = start + batchsize;
const off_t longptr = (off_t) thread << 19;
uint32_t * long_state = &d_long_state[longptr];
uint32_t * ctx_a = &d_ctx_a[thread * 4];
uint32_t * ctx_b = &d_ctx_b[thread * 4];
uint32_t a[4], b[4];
MEMCPY8(a, ctx_a, 2);
MEMCPY8(b, ctx_b, 2);
for(int i = start; i < end; i++) // end = 262144
{
uint32_t c[4];
uint32_t j = (a[0] >> 2) & E2I_MASK2;
cn_aes_single_round(sharedMemory, &long_state[j], c, a);
XOR_BLOCKS_DST(c, b, &long_state[j]);
MUL_SUM_XOR_DST(c, a, &long_state[(c[0] >> 2) & E2I_MASK2]);
j = (a[0] >> 2) & E2I_MASK2;
cn_aes_single_round(sharedMemory, &long_state[j], b, a);
XOR_BLOCKS_DST(b, c, &long_state[j]);
MUL_SUM_XOR_DST(b, a, &long_state[(b[0] >> 2) & E2I_MASK2]);
}
if(bfactor > 0)
{
MEMCPY8(ctx_a, a, 2);
MEMCPY8(ctx_b, b, 2);
}
}
#endif // __CUDA_ARCH__ >= 300
}
__global__
void cryptonight_core_gpu_phase3(int threads, const uint32_t * __restrict__ long_state, uint32_t * __restrict__ d_ctx_state, uint32_t * __restrict__ d_ctx_key2)
{
__shared__ uint32_t sharedMemory[1024];
cn_aes_gpu_init(sharedMemory);
int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3;
int sub = (threadIdx.x & 7) << 2;
if(thread < threads)
{
uint32_t key[40], text[4];
MEMCPY8(key, d_ctx_key2 + thread * 40, 20);
MEMCPY8(text, d_ctx_state + thread * 50 + sub + 16, 2);
__syncthreads();
for(int i = 0; i < 0x80000; i += 32)
{
#pragma unroll
for(int j = 0; j < 4; ++j)
text[j] ^= long_state[(thread << 19) + sub + i + j];
cn_aes_pseudo_round_mut(sharedMemory, text, key);
}
MEMCPY8(d_ctx_state + thread * 50 + sub + 16, text, 2);
}
}
__host__
void cryptonight_core_cpu_hash(int thr_id, int blocks, int threads, uint32_t *d_long_state, uint32_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2)
{
dim3 grid(blocks);
dim3 block(threads);
dim3 block4(threads << 2);
dim3 block8(threads << 3);
const int bfactor = cn_bfactor; // device_bfactor[thr_id];
const int bsleep = cn_bsleep; //device_bsleep[thr_id];
int i, partcount = 1 << bfactor;
int dev_id = device_map[thr_id];
cryptonight_core_gpu_phase1 <<<grid, block8 >>>(blocks*threads, d_long_state, d_ctx_state, d_ctx_key1);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
if(partcount > 1) usleep(bsleep);
for(i = 0; i < partcount; i++)
{
cryptonight_core_gpu_phase2 <<<grid, (device_sm[dev_id] >= 300 ? block4 : block)>>>(blocks*threads, bfactor, i, d_long_state, d_ctx_a, d_ctx_b);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
if(partcount > 1) usleep(bsleep);
}
cryptonight_core_gpu_phase3 <<<grid, block8 >>>(blocks*threads, d_long_state, d_ctx_state, d_ctx_key2);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
}