GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

469 lines
16 KiB

/**
* Blake-256 Decred 180-Bytes input Cuda Kernel
*
* Tanguy Pruvot, Alexis Provos - Feb/Sep 2016
*/
#include <stdint.h>
#include <memory.h>
#include <miner.h>
extern "C" {
#include <sph/sph_blake.h>
}
/* threads per block */
#define TPB 640
/* max count of found nonces in one call (like sgminer) */
#define MAX_RESULTS 4
/* hash by cpu with blake 256 */
extern "C" void decred_hash(void *output, const void *input)
{
sph_blake256_context ctx;
sph_blake256_set_rounds(14);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 180);
sph_blake256_close(&ctx, output);
}
#include <cuda_helper.h>
#ifdef __INTELLISENSE__
#define __byte_perm(x, y, b) x
#define atomicInc(p, max) (*p)++
#endif
__constant__ uint32_t _ALIGN(16) c_h[2];
__constant__ uint32_t _ALIGN(16) c_data[32];
__constant__ uint32_t _ALIGN(16) c_xors[215];
/* Buffers of candidate nonce(s) */
static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS];
#define ROR8(a) __byte_perm(a, 0, 0x0321)
#define ROL16(a) __byte_perm(a, 0, 0x1032)
/* macro bodies */
#define pxorGS(a,b,c,d) { \
v[a]+= c_xors[i++] + v[b]; \
v[d] = ROL16(v[d] ^ v[a]); \
v[c]+= v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 12); \
v[a]+= c_xors[i++] + v[b]; \
v[d] = ROR8(v[d] ^ v[a]); \
v[c]+= v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 7); \
}
#define pxorGS2(a,b,c,d, a1,b1,c1,d1) {\
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxory1GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxory0GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxorx1GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxorx0GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
__global__ __launch_bounds__(TPB,1)
void decred_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint32_t highTarget)
{
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
if (thread < threads)
{
uint32_t v[16];
#pragma unroll
for(int i=0; i<16; i+=4) {
*(uint4*)&v[i] = *(uint4*)&c_data[i];
}
const uint32_t nonce = startNonce + thread;
v[ 1]+= (nonce ^ 0x13198A2E);
v[13] = ROR8(v[13] ^ v[1]);
v[ 9]+= v[13];
v[ 5] = ROTR32(v[5] ^ v[9], 7);
int i = 0;
v[ 1]+= c_xors[i++];// + v[ 6];
v[ 0]+= v[5];
v[12] = ROL16(v[12] ^ v[ 1]); v[15] = ROL16(v[15] ^ v[ 0]);
v[11]+= v[12]; v[10]+= v[15];
v[ 6] = ROTR32(v[ 6] ^ v[11], 12); v[ 5] = ROTR32(v[5] ^ v[10], 12);
v[ 1]+= c_xors[i++] + v[ 6]; v[ 0]+= c_xors[i++] + v[ 5];
v[12] = ROR8(v[12] ^ v[ 1]); v[15] = ROR8(v[15] ^ v[ 0]);
v[11]+= v[12]; v[10]+= v[15];
v[ 6] = ROTR32(v[ 6] ^ v[11], 7); v[ 5] = ROTR32(v[ 5] ^ v[10], 7);
pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxory1GS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorx1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorx1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorx1GS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxory1GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxory1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorx1GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxory0GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorx0GS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxory1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxory1GS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorx1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorx1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS( 2, 7, 8, 13);
if ((c_h[1]^v[15]) == v[7]) {
v[ 3] += c_xors[i++] + v[4];
v[14] = ROL16(v[14] ^ v[3]);
v[ 9] += v[14];
v[ 4] = ROTR32(v[4] ^ v[9], 12);
v[ 3] += c_xors[i++] + v[4];
v[14] = ROR8(v[14] ^ v[3]);
if(cuda_swab32((c_h[0]^v[6]^v[14])) <= highTarget) {
uint32_t pos = atomicInc(&resNonce[0], UINT32_MAX)+1;
resNonce[pos] = nonce;
return;
}
}
}
}
__host__
void decred_cpu_setBlock_52(const uint32_t *input)
{
/*
Precompute everything possible and pass it on constant memory
*/
const uint32_t z[16] = {
0x243F6A88U, 0x85A308D3U, 0x13198A2EU, 0x03707344U,
0xA4093822U, 0x299F31D0U, 0x082EFA98U, 0xEC4E6C89U,
0x452821E6U, 0x38D01377U, 0xBE5466CFU, 0x34E90C6CU,
0xC0AC29B7U, 0xC97C50DDU, 0x3F84D5B5U, 0xB5470917U
};
int i=0;
uint32_t _ALIGN(64) preXOR[215];
uint32_t _ALIGN(64) data[16];
uint32_t _ALIGN(64) m[16];
uint32_t _ALIGN(64) h[ 2];
sph_blake256_context ctx;
sph_blake256_set_rounds(14);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 128);
data[ 0] = ctx.H[0];
data[ 1] = ctx.H[1];
data[ 2] = ctx.H[2];
data[ 3] = ctx.H[3];
data[ 4] = ctx.H[4];
data[ 5] = ctx.H[5];
data[ 8] = ctx.H[6];
data[12] = swab32(input[35]);
data[13] = ctx.H[7];
// pre swab32
m[ 0] = swab32(input[32]); m[ 1] = swab32(input[33]);
m[ 2] = swab32(input[34]); m[ 3] = 0;
m[ 4] = swab32(input[36]); m[ 5] = swab32(input[37]);
m[ 6] = swab32(input[38]); m[ 7] = swab32(input[39]);
m[ 8] = swab32(input[40]); m[ 9] = swab32(input[41]);
m[10] = swab32(input[42]); m[11] = swab32(input[43]);
m[12] = swab32(input[44]); m[13] = 0x80000001;
m[14] = 0;
m[15] = 0x000005a0;
h[ 0] = data[ 8];
h[ 1] = data[13];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_h,h, 8, 0, cudaMemcpyHostToDevice));
data[ 0]+= (m[ 0] ^ z[1]) + data[ 4];
data[12] = SPH_ROTR32(z[4] ^ SPH_C32(0x5A0) ^ data[ 0], 16);
data[ 8] = z[0]+data[12];
data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 12);
data[ 0]+= (m[ 1] ^ z[0]) + data[ 4];
data[12] = SPH_ROTR32(data[12] ^ data[ 0],8);
data[ 8]+= data[12];
data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 7);
data[ 1]+= (m[ 2] ^ z[3]) + data[ 5];
data[13] = SPH_ROTR32((z[5] ^ SPH_C32(0x5A0)) ^ data[ 1], 16);
data[ 9] = z[1]+data[13];
data[ 5] = SPH_ROTR32(data[ 5] ^ data[ 9], 12);
data[ 1]+= data[ 5]; //+nonce ^ ...
data[ 2]+= (m[ 4] ^ z[5]) + h[ 0];
data[14] = SPH_ROTR32(z[6] ^ data[ 2],16);
data[10] = z[2] + data[14];
data[ 6] = SPH_ROTR32(h[ 0] ^ data[10], 12);
data[ 2]+= (m[ 5] ^ z[4]) + data[ 6];
data[14] = SPH_ROTR32(data[14] ^ data[ 2], 8);
data[10]+= data[14];
data[ 6] = SPH_ROTR32(data[ 6] ^ data[10], 7);
data[ 3]+= (m[ 6] ^ z[7]) + h[ 1];
data[15] = SPH_ROTR32(z[7] ^ data[ 3],16);
data[11] = z[3] + data[15];
data[ 7] = SPH_ROTR32(h[ 1] ^ data[11], 12);
data[ 3]+= (m[ 7] ^ z[6]) + data[ 7];
data[15] = SPH_ROTR32(data[15] ^ data[ 3],8);
data[11]+= data[15];
data[ 7] = SPH_ROTR32(data[11] ^ data[ 7], 7);
data[ 0]+= m[ 8] ^ z[9];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, 64, 0, cudaMemcpyHostToDevice));
#define precalcXORGS(x,y) { \
preXOR[i++]= (m[x] ^ z[y]); \
preXOR[i++]= (m[y] ^ z[x]); \
}
#define precalcXORGS2(x,y,x1,y1){\
preXOR[i++] = (m[ x] ^ z[ y]);\
preXOR[i++] = (m[x1] ^ z[y1]);\
preXOR[i++] = (m[ y] ^ z[ x]);\
preXOR[i++] = (m[y1] ^ z[x1]);\
}
precalcXORGS(10,11);
preXOR[ 0]+=data[ 6];
preXOR[i++] = (m[9] ^ z[8]);
precalcXORGS2(12,13,14,15);
precalcXORGS2(14,10, 4, 8);
precalcXORGS2( 9,15,13, 6);
precalcXORGS2( 1,12, 0, 2);
precalcXORGS2(11, 7, 5, 3);
precalcXORGS2(11, 8,12, 0);
precalcXORGS2( 5, 2,15,13);
precalcXORGS2(10,14, 3, 6);
precalcXORGS2( 7, 1, 9, 4);
precalcXORGS2( 7, 9, 3, 1);
precalcXORGS2(13,12,11,14);
precalcXORGS2( 2, 6, 5,10);
precalcXORGS2( 4, 0,15, 8);
precalcXORGS2( 9, 0, 5, 7);
precalcXORGS2( 2, 4,10,15);
precalcXORGS2(14, 1,11,12);
precalcXORGS2( 6, 8, 3,13);
precalcXORGS2( 2,12, 6,10);
precalcXORGS2( 0,11, 8, 3);
precalcXORGS2( 4,13, 7, 5);
precalcXORGS2(15,14, 1, 9);
precalcXORGS2(12, 5, 1,15);
precalcXORGS2(14,13, 4,10);
precalcXORGS2( 0, 7, 6, 3);
precalcXORGS2( 9, 2, 8,11);
precalcXORGS2(13,11, 7,14);
precalcXORGS2(12, 1, 3, 9);
precalcXORGS2( 5, 0,15, 4);
precalcXORGS2( 8, 6, 2,10);
precalcXORGS2( 6,15,14, 9);
precalcXORGS2(11, 3, 0, 8);
precalcXORGS2(12, 2,13, 7);
precalcXORGS2( 1, 4,10, 5);
precalcXORGS2(10, 2, 8, 4);
precalcXORGS2( 7, 6, 1, 5);
precalcXORGS2(15,11, 9,14);
precalcXORGS2( 3,12,13, 0);
precalcXORGS2( 0, 1, 2, 3);
precalcXORGS2( 4, 5, 6, 7);
precalcXORGS2( 8, 9,10,11);
precalcXORGS2(12,13,14,15);
precalcXORGS2(14,10, 4, 8);
precalcXORGS2( 9,15,13, 6);
precalcXORGS2( 1,12, 0, 2);
precalcXORGS2(11, 7, 5, 3);
precalcXORGS2(11, 8,12, 0);
precalcXORGS2( 5, 2,15,13);
precalcXORGS2(10,14, 3, 6);
precalcXORGS2( 7, 1, 9, 4);
precalcXORGS2( 7, 9, 3, 1);
precalcXORGS2(13,12,11,14);
precalcXORGS2( 2, 6, 5,10);
precalcXORGS( 4, 0);
precalcXORGS(15, 8);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_xors, preXOR, 215*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
}
/* ############################################################################################################################### */
static bool init[MAX_GPUS] = { 0 };
// nonce position is different in decred
#define DCR_NONCE_OFT32 35
extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(64) endiandata[48];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *pnonce = &pdata[DCR_NONCE_OFT32];
const uint32_t first_nonce = *pnonce;
const uint32_t targetHigh = opt_benchmark ? 0x1ULL : ptarget[6];
const int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
const dim3 grid((throughput + TPB-1)/(TPB));
const dim3 block(TPB);
if (!init[thr_id]) {
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], MAX_RESULTS*sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], MAX_RESULTS*sizeof(uint32_t)), -1);
init[thr_id] = true;
}
memcpy(endiandata, pdata, 180);
decred_cpu_setBlock_52(endiandata);
cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t));
do {
uint32_t* resNonces = h_resNonce[thr_id];
if (resNonces[0]) cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t));
// GPU HASH
decred_gpu_hash_nonce <<<grid, block>>> (throughput, (*pnonce), d_resNonce[thr_id], targetHigh);
// first cell contains the valid nonces count
cudaMemcpy(resNonces, d_resNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (resNonces[0])
{
uint32_t _ALIGN(64) vhash[8];
cudaMemcpy(resNonces, d_resNonce[thr_id], (resNonces[0]+1)*sizeof(uint32_t), cudaMemcpyDeviceToHost);
be32enc(&endiandata[DCR_NONCE_OFT32], resNonces[1]);
decred_hash(vhash, endiandata);
if (vhash[6] <= ptarget[6] && fulltest(vhash, ptarget))
{
int rc = work->valid_nonces = 1;
work_set_target_ratio(work, vhash);
*hashes_done = (*pnonce) - first_nonce + throughput;
work->nonces[0] = swab32(resNonces[1]);
*pnonce = work->nonces[0];
// search for another nonce
for(uint32_t n=2; n <= resNonces[0]; n++)
{
be32enc(&endiandata[DCR_NONCE_OFT32], resNonces[n]);
decred_hash(vhash, endiandata);
if (vhash[6] <= ptarget[6] && fulltest(vhash, ptarget)) {
work->nonces[1] = swab32(resNonces[n]);
if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio[0]) {
// we really want the best first ? depends...
work->shareratio[1] = work->shareratio[0];
work->sharediff[1] = work->sharediff[0];
xchg(work->nonces[1], work->nonces[0]);
work_set_target_ratio(work, vhash);
work->valid_nonces++;
} else if (work->valid_nonces == 1) {
bn_set_target_ratio(work, vhash, 1);
work->valid_nonces++;
}
rc = 2; // MAX_NONCES submit limited to 2
gpulog(LOG_DEBUG, thr_id, "multiple nonces 1:%08x (%g) %u:%08x (%g)",
work->nonces[0], work->sharediff[0], n, work->nonces[1], work->sharediff[1]);
} else if (vhash[6] > ptarget[6]) {
gpulog(LOG_WARNING, thr_id, "result %u for %08x does not validate on CPU!", n, resNonces[n]);
}
}
return rc;
} else if (vhash[6] > ptarget[6]) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", resNonces[1]);
}
}
*pnonce += throughput;
} while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + (*pnonce));
*hashes_done = (*pnonce) - first_nonce;
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
return 0;
}
// cleanup
extern "C" void free_decred(int thr_id)
{
if (!init[thr_id])
return;
cudaDeviceSynchronize();
cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}