GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

222 lines
6.6 KiB

extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_bmw.h"
#include "sph/sph_skein.h"
#include "sph/sph_keccak.h"
#include "sph/sph_cubehash.h"
#include "lyra2/Lyra2.h"
}
#include "miner.h"
#include "cuda_helper.h"
static uint64_t *d_hash[MAX_GPUS];
static uint64_t* d_matrix[MAX_GPUS];
extern void blake256_cpu_init(int thr_id, uint32_t threads);
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
extern void blake256_cpu_setBlock_80(uint32_t *pdata);
extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void keccak256_cpu_init(int thr_id, uint32_t threads);
extern void keccak256_cpu_free(int thr_id);
extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void skein256_cpu_init(int thr_id, uint32_t threads);
extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order);
extern void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix);
extern void bmw256_setTarget(const void *ptarget);
extern void bmw256_cpu_init(int thr_id, uint32_t threads);
extern void bmw256_cpu_free(int thr_id);
extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces);
void lyra2v2_hash(void *state, const void *input)
{
uint32_t hashA[8], hashB[8];
sph_blake256_context ctx_blake;
sph_keccak256_context ctx_keccak;
sph_skein256_context ctx_skein;
sph_bmw256_context ctx_bmw;
sph_cubehash256_context ctx_cube;
sph_blake256_set_rounds(14);
sph_blake256_init(&ctx_blake);
sph_blake256(&ctx_blake, input, 80);
sph_blake256_close(&ctx_blake, hashA);
sph_keccak256_init(&ctx_keccak);
sph_keccak256(&ctx_keccak, hashA, 32);
sph_keccak256_close(&ctx_keccak, hashB);
sph_cubehash256_init(&ctx_cube);
sph_cubehash256(&ctx_cube, hashB, 32);
sph_cubehash256_close(&ctx_cube, hashA);
LYRA2(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4);
sph_skein256_init(&ctx_skein);
sph_skein256(&ctx_skein, hashB, 32);
sph_skein256_close(&ctx_skein, hashA);
sph_cubehash256_init(&ctx_cube);
sph_cubehash256(&ctx_cube, hashA, 32);
sph_cubehash256_close(&ctx_cube, hashB);
sph_bmw256_init(&ctx_bmw);
sph_bmw256(&ctx_bmw, hashB, 32);
sph_bmw256_close(&ctx_bmw, hashA);
memcpy(state, hashA, 32);
}
#ifdef _DEBUG
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 32); \
cudaMemcpy(debugbuf, d_hash[thr_id], 32, cudaMemcpyDeviceToHost); \
printf("lyra2 %s %08x %08x %08x %08x...%08x... \n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3]), swab32(debugbuf[7])); \
cudaFreeHost(debugbuf); \
} \
}
#else
#define TRACE(algo) {}
#endif
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] < 500) ? 18 : is_windows() ? 19 : 20;
uint32_t throughput = cuda_default_throughput(dev_id, 1UL << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
ptarget[7] = 0x000f;
if (!init[thr_id])
{
size_t matrix_sz = 16 * sizeof(uint64_t) * 4 * 3;
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
blake256_cpu_init(thr_id, throughput);
keccak256_cpu_init(thr_id,throughput);
skein256_cpu_init(thr_id, throughput);
bmw256_cpu_init(thr_id, throughput);
// SM 3 implentation requires a bit more memory
if (device_sm[dev_id] < 500 || cuda_arch[dev_id] < 500)
matrix_sz = 16 * sizeof(uint64_t) * 4 * 4;
CUDA_SAFE_CALL(cudaMalloc(&d_matrix[thr_id], matrix_sz * throughput));
lyra2v2_cpu_init(thr_id, throughput, d_matrix[thr_id]);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput));
api_set_throughput(thr_id, throughput);
init[thr_id] = true;
}
uint32_t endiandata[20];
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
blake256_cpu_setBlock_80(pdata);
bmw256_setTarget(ptarget);
do {
int order = 0;
uint32_t foundNonces[2] = { 0, 0 };
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("blake :");
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("keccak :");
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("cube :");
lyra2v2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("lyra2 :");
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("skein :");
cubehash256_cpu_hash_32(thr_id, throughput,pdata[19], d_hash[thr_id], order++);
TRACE("cube :");
bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], foundNonces);
*hashes_done = pdata[19] - first_nonce + throughput;
if (foundNonces[0] != 0)
{
uint32_t vhash64[8];
be32enc(&endiandata[19], foundNonces[0]);
lyra2v2_hash(vhash64, endiandata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget))
{
int res = 1;
work_set_target_ratio(work, vhash64);
pdata[19] = foundNonces[0];
// check if there was another one...
if (foundNonces[1] != 0)
{
be32enc(&endiandata[19], foundNonces[1]);
lyra2v2_hash(vhash64, endiandata);
pdata[21] = foundNonces[1];
if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhash64);
xchg(pdata[19], pdata[21]);
}
res++;
}
return res;
}
else
{
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonces[0]);
}
}
if ((uint64_t)throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart && !abort_flag);
*hashes_done = pdata[19] - first_nonce;
return 0;
}
// cleanup
extern "C" void free_lyra2v2(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFree(d_hash[thr_id]);
cudaFree(d_matrix[thr_id]);
bmw256_cpu_free(thr_id);
keccak256_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}