You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
273 lines
9.4 KiB
273 lines
9.4 KiB
#include <cuda.h> |
|
#include "cuda_runtime.h" |
|
#include "device_launch_parameters.h" |
|
|
|
#include <stdio.h> |
|
#include <memory.h> |
|
|
|
// Folgende Definitionen später durch header ersetzen |
|
typedef unsigned char uint8_t; |
|
typedef unsigned int uint32_t; |
|
typedef unsigned long long uint64_t; |
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads |
|
extern uint32_t *d_heftyHashes[8]; |
|
extern uint32_t *d_nonceVector[8]; |
|
|
|
// globaler Speicher für unsere Ergebnisse |
|
uint32_t *d_hash3output[8]; |
|
|
|
// der Keccak512 State nach der ersten Runde (72 Bytes) |
|
__constant__ uint64_t c_State[25]; |
|
|
|
// die Message (72 Bytes) für die zweite Runde auf der GPU |
|
__constant__ uint32_t c_PaddedMessage2[18]; // 44 bytes of remaining message (Nonce at offset 4) plus padding |
|
|
|
// ---------------------------- BEGIN CUDA keccak512 functions ------------------------------------ |
|
|
|
#define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b))) |
|
|
|
#define U32TO64_LE(p) \ |
|
(((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32)) |
|
|
|
#define U64TO32_LE(p, v) \ |
|
*p = (uint32_t)((v)); *(p+1) = (uint32_t)((v) >> 32); |
|
|
|
static __device__ void mycpy72(uint32_t *d, const uint32_t *s) { |
|
#pragma unroll 18 |
|
for (int k=0; k < 18; ++k) d[k] = s[k]; |
|
} |
|
|
|
static __device__ void mycpy32(uint32_t *d, const uint32_t *s) { |
|
#pragma unroll 8 |
|
for (int k=0; k < 8; ++k) d[k] = s[k]; |
|
} |
|
|
|
typedef struct keccak_hash_state_t { |
|
uint64_t state[25]; // 25*2 |
|
uint32_t buffer[72/4]; // 72 |
|
} keccak_hash_state; |
|
|
|
__device__ void statecopy(uint64_t *d, uint64_t *s) |
|
{ |
|
#pragma unroll 25 |
|
for (int i=0; i < 25; ++i) |
|
d[i] = s[i]; |
|
} |
|
|
|
|
|
static const uint64_t host_keccak_round_constants[24] = { |
|
0x0000000000000001ull, 0x0000000000008082ull, |
|
0x800000000000808aull, 0x8000000080008000ull, |
|
0x000000000000808bull, 0x0000000080000001ull, |
|
0x8000000080008081ull, 0x8000000000008009ull, |
|
0x000000000000008aull, 0x0000000000000088ull, |
|
0x0000000080008009ull, 0x000000008000000aull, |
|
0x000000008000808bull, 0x800000000000008bull, |
|
0x8000000000008089ull, 0x8000000000008003ull, |
|
0x8000000000008002ull, 0x8000000000000080ull, |
|
0x000000000000800aull, 0x800000008000000aull, |
|
0x8000000080008081ull, 0x8000000000008080ull, |
|
0x0000000080000001ull, 0x8000000080008008ull |
|
}; |
|
|
|
__constant__ uint64_t c_keccak_round_constants[24]; |
|
|
|
__host__ __device__ void |
|
keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_constants) { |
|
size_t i; |
|
uint64_t t[5], u[5], v, w; |
|
|
|
/* absorb input */ |
|
#pragma unroll 9 |
|
for (i = 0; i < 72 / 8; i++, in += 2) |
|
s[i] ^= U32TO64_LE(in); |
|
|
|
for (i = 0; i < 24; i++) { |
|
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
|
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
|
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
|
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
|
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
|
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
|
|
|
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
|
u[0] = t[4] ^ ROTL64(t[1], 1); |
|
u[1] = t[0] ^ ROTL64(t[2], 1); |
|
u[2] = t[1] ^ ROTL64(t[3], 1); |
|
u[3] = t[2] ^ ROTL64(t[4], 1); |
|
u[4] = t[3] ^ ROTL64(t[0], 1); |
|
|
|
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
|
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
|
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
|
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
|
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
|
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
|
|
|
/* rho pi: b[..] = rotl(a[..], ..) */ |
|
v = s[ 1]; |
|
s[ 1] = ROTL64(s[ 6], 44); |
|
s[ 6] = ROTL64(s[ 9], 20); |
|
s[ 9] = ROTL64(s[22], 61); |
|
s[22] = ROTL64(s[14], 39); |
|
s[14] = ROTL64(s[20], 18); |
|
s[20] = ROTL64(s[ 2], 62); |
|
s[ 2] = ROTL64(s[12], 43); |
|
s[12] = ROTL64(s[13], 25); |
|
s[13] = ROTL64(s[19], 8); |
|
s[19] = ROTL64(s[23], 56); |
|
s[23] = ROTL64(s[15], 41); |
|
s[15] = ROTL64(s[ 4], 27); |
|
s[ 4] = ROTL64(s[24], 14); |
|
s[24] = ROTL64(s[21], 2); |
|
s[21] = ROTL64(s[ 8], 55); |
|
s[ 8] = ROTL64(s[16], 45); |
|
s[16] = ROTL64(s[ 5], 36); |
|
s[ 5] = ROTL64(s[ 3], 28); |
|
s[ 3] = ROTL64(s[18], 21); |
|
s[18] = ROTL64(s[17], 15); |
|
s[17] = ROTL64(s[11], 10); |
|
s[11] = ROTL64(s[ 7], 6); |
|
s[ 7] = ROTL64(s[10], 3); |
|
s[10] = ROTL64( v, 1); |
|
|
|
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
|
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; |
|
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; |
|
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
|
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
|
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
|
|
|
/* iota: a[0,0] ^= round constant */ |
|
s[0] ^= keccak_round_constants[i]; |
|
} |
|
} |
|
|
|
// Die Hash-Funktion |
|
__global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
// bestimme den aktuellen Zähler |
|
//uint32_t nounce = startNounce + thread; |
|
uint32_t nounce = nonceVector[thread]; |
|
|
|
// Index-Position des Hashes in den Hash Puffern bestimmen (Hefty1 und outputHash) |
|
uint32_t hashPosition = nounce - startNounce; |
|
|
|
// erstmal den State der ersten Runde holen |
|
uint64_t keccak_gpu_state[25]; |
|
#pragma unroll 25 |
|
for (int i=0; i < 25; ++i) |
|
keccak_gpu_state[i] = c_State[i]; |
|
|
|
// Message2 in den Puffer holen |
|
uint32_t msgBlock[18]; |
|
mycpy72(msgBlock, c_PaddedMessage2); |
|
|
|
// die individuelle Nonce einsetzen |
|
msgBlock[1] = nounce; |
|
|
|
// den individuellen Hefty1 Hash einsetzen |
|
mycpy32(&msgBlock[3], &heftyHashes[8 * hashPosition]); |
|
|
|
// den Block einmal gut durchschütteln |
|
keccak_block(keccak_gpu_state, msgBlock, c_keccak_round_constants); |
|
|
|
// das Hash erzeugen |
|
uint32_t hash[16]; |
|
|
|
#pragma unroll 8 |
|
for (size_t i = 0; i < 64; i += 8) { |
|
U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]); |
|
} |
|
|
|
|
|
// und ins Global Memory rausschreiben |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) |
|
((uint32_t*)outputHash)[16*hashPosition+k] = hash[k]; |
|
} |
|
} |
|
|
|
// ---------------------------- END CUDA keccak512 functions ------------------------------------ |
|
|
|
// Setup-Funktionen |
|
__host__ void keccak512_cpu_init(int thr_id, int threads) |
|
{ |
|
// Kopiere die Hash-Tabellen in den GPU-Speicher |
|
cudaMemcpyToSymbol( c_keccak_round_constants, |
|
host_keccak_round_constants, |
|
sizeof(host_keccak_round_constants), |
|
0, cudaMemcpyHostToDevice); |
|
|
|
// Speicher für alle Ergebnisse belegen |
|
cudaMalloc(&d_hash3output[thr_id], 16 * sizeof(uint32_t) * threads); |
|
} |
|
|
|
// ----------------BEGIN keccak512 CPU version from scrypt-jane code -------------------- |
|
|
|
#define SCRYPT_HASH_DIGEST_SIZE 64 |
|
#define SCRYPT_KECCAK_F 1600 |
|
#define SCRYPT_KECCAK_C (SCRYPT_HASH_DIGEST_SIZE * 8 * 2) /* 1024 */ |
|
#define SCRYPT_KECCAK_R (SCRYPT_KECCAK_F - SCRYPT_KECCAK_C) /* 576 */ |
|
#define SCRYPT_HASH_BLOCK_SIZE (SCRYPT_KECCAK_R / 8) /* 72 */ |
|
|
|
// --------------- END keccak512 CPU version from scrypt-jane code -------------------- |
|
|
|
__host__ void keccak512_cpu_setBlock(void *data) |
|
// data muss 84-Byte haben! |
|
// heftyHash hat 32-Byte |
|
{ |
|
// CH |
|
// state init |
|
uint64_t keccak_cpu_state[25]; |
|
memset(keccak_cpu_state, 0, 200); |
|
|
|
// keccak hat 72-Byte blöcke, d.h. in unserem Fall zwei Blöcke |
|
// zu jeweils |
|
uint32_t msgBlock[18]; |
|
memset(msgBlock, 0, 18 * sizeof(uint32_t)); |
|
|
|
// kopiere die Daten rein (aber nur alles nach Bit 72) |
|
memcpy(&msgBlock[0], &((uint8_t*)data)[72], 12); |
|
|
|
// Nachricht abschließen |
|
msgBlock[11] = 0x01; |
|
msgBlock[17] = 0x80000000; |
|
|
|
// erste Runde |
|
keccak_block((uint64_t*)&keccak_cpu_state, (const uint32_t*)data, host_keccak_round_constants); |
|
|
|
// Message 2 ins Constant Memory kopieren (die variable Nonce und |
|
// der Hefty1 Anteil muss aber auf der GPU erst noch ersetzt werden) |
|
cudaMemcpyToSymbol( c_PaddedMessage2, msgBlock, 18*sizeof(uint32_t), 0, cudaMemcpyHostToDevice ); |
|
|
|
// state kopieren |
|
cudaMemcpyToSymbol( c_State, keccak_cpu_state, 25*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); |
|
} |
|
|
|
__host__ void keccak512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy) |
|
{ |
|
// Hefty1 Hashes kopieren |
|
if (copy) cudaMemcpy( d_heftyHashes[thr_id], heftyHashes, 8 * sizeof(uint32_t) * threads, cudaMemcpyHostToDevice ); |
|
//else cudaThreadSynchronize(); |
|
} |
|
|
|
__host__ void keccak512_cpu_hash(int thr_id, int threads, uint32_t startNounce) |
|
{ |
|
const int threadsperblock = 128; |
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
// Größe des dynamischen Shared Memory Bereichs |
|
size_t shared_size = 0; |
|
|
|
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
|
|
|
keccak512_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]); |
|
}
|
|
|