You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
6.6 KiB
203 lines
6.6 KiB
/* |
|
* Copyright 2008-2012 NVIDIA Corporation |
|
* |
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
* you may not use this file except in compliance with the License. |
|
* You may obtain a copy of the License at |
|
* |
|
* http://www.apache.org/licenses/LICENSE-2.0 |
|
* |
|
* Unless required by applicable law or agreed to in writing, software |
|
* distributed under the License is distributed on an "AS IS" BASIS, |
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
* See the License for the specific language governing permissions and |
|
* limitations under the License. |
|
*/ |
|
|
|
#include <thrust/detail/config.h> |
|
|
|
#include <thrust/iterator/iterator_traits.h> |
|
|
|
#include <thrust/detail/minmax.h> |
|
#include <thrust/system/detail/internal/decompose.h> |
|
#include <thrust/system/cuda/detail/extern_shared_ptr.h> |
|
#include <thrust/system/cuda/detail/block/reduce.h> |
|
#include <thrust/system/cuda/detail/detail/launch_closure.h> |
|
#include <thrust/system/cuda/detail/detail/launch_calculator.h> |
|
|
|
namespace thrust |
|
{ |
|
namespace system |
|
{ |
|
namespace cuda |
|
{ |
|
namespace detail |
|
{ |
|
|
|
template <typename InputIterator, |
|
typename OutputIterator, |
|
typename BinaryFunction, |
|
typename Decomposition, |
|
typename Context> |
|
struct commutative_reduce_intervals_closure |
|
{ |
|
InputIterator input; |
|
OutputIterator output; |
|
BinaryFunction binary_op; |
|
Decomposition decomposition; |
|
unsigned int shared_array_size; |
|
|
|
typedef Context context_type; |
|
context_type context; |
|
|
|
commutative_reduce_intervals_closure(InputIterator input, OutputIterator output, BinaryFunction binary_op, Decomposition decomposition, unsigned int shared_array_size, Context context = Context()) |
|
: input(input), output(output), binary_op(binary_op), decomposition(decomposition), shared_array_size(shared_array_size), context(context) {} |
|
|
|
__device__ __thrust_forceinline__ |
|
void operator()(void) |
|
{ |
|
typedef typename thrust::iterator_value<OutputIterator>::type OutputType; |
|
extern_shared_ptr<OutputType> shared_array; |
|
|
|
typedef typename Decomposition::index_type index_type; |
|
|
|
// this block processes results in [range.begin(), range.end()) |
|
thrust::system::detail::internal::index_range<index_type> range = decomposition[context.block_index()]; |
|
|
|
index_type i = range.begin() + context.thread_index(); |
|
|
|
input += i; |
|
|
|
if (range.size() < context.block_dimension()) |
|
{ |
|
// compute reduction with the first shared_array_size threads |
|
if (context.thread_index() < thrust::min<index_type>(shared_array_size,range.size())) |
|
{ |
|
OutputType sum = *input; |
|
|
|
i += shared_array_size; |
|
input += shared_array_size; |
|
|
|
while (i < range.end()) |
|
{ |
|
OutputType val = *input; |
|
|
|
sum = binary_op(sum, val); |
|
|
|
i += shared_array_size; |
|
input += shared_array_size; |
|
} |
|
|
|
shared_array[context.thread_index()] = sum; |
|
} |
|
} |
|
else |
|
{ |
|
// compute reduction with all blockDim.x threads |
|
OutputType sum = *input; |
|
|
|
i += context.block_dimension(); |
|
input += context.block_dimension(); |
|
|
|
while (i < range.end()) |
|
{ |
|
OutputType val = *input; |
|
|
|
sum = binary_op(sum, val); |
|
|
|
i += context.block_dimension(); |
|
input += context.block_dimension(); |
|
} |
|
|
|
// write first shared_array_size values into shared memory |
|
if (context.thread_index() < shared_array_size) |
|
shared_array[context.thread_index()] = sum; |
|
|
|
// accumulate remaining values (if any) to shared memory in stages |
|
if (context.block_dimension() > shared_array_size) |
|
{ |
|
unsigned int lb = shared_array_size; |
|
unsigned int ub = shared_array_size + lb; |
|
|
|
while (lb < context.block_dimension()) |
|
{ |
|
context.barrier(); |
|
|
|
if (lb <= context.thread_index() && context.thread_index() < ub) |
|
{ |
|
OutputType tmp = shared_array[context.thread_index() - lb]; |
|
shared_array[context.thread_index() - lb] = binary_op(tmp, sum); |
|
} |
|
|
|
lb += shared_array_size; |
|
ub += shared_array_size; |
|
} |
|
} |
|
} |
|
|
|
context.barrier(); |
|
|
|
block::reduce_n(context, shared_array, thrust::min<index_type>(range.size(), shared_array_size), binary_op); |
|
|
|
if (context.thread_index() == 0) |
|
{ |
|
output += context.block_index(); |
|
*output = shared_array[0]; |
|
} |
|
} |
|
}; |
|
|
|
__THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_BEGIN |
|
|
|
template <typename ExecutionPolicy, |
|
typename InputIterator, |
|
typename OutputIterator, |
|
typename BinaryFunction, |
|
typename Decomposition> |
|
void reduce_intervals(execution_policy<ExecutionPolicy> &, |
|
InputIterator input, |
|
OutputIterator output, |
|
BinaryFunction binary_op, |
|
Decomposition decomp) |
|
{ |
|
// we're attempting to launch a kernel, assert we're compiling with nvcc |
|
// ======================================================================== |
|
// X Note to the user: If you've found this line due to a compiler error, X |
|
// X you need to compile your code using nvcc, rather than g++ or cl.exe X |
|
// ======================================================================== |
|
THRUST_STATIC_ASSERT( (thrust::detail::depend_on_instantiation<InputIterator, THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC>::value) ); |
|
|
|
if (decomp.size() == 0) |
|
return; |
|
|
|
// TODO if (decomp.size() > deviceProperties.maxGridSize[0]) throw cuda exception (or handle general case) |
|
|
|
typedef detail::blocked_thread_array Context; |
|
typedef commutative_reduce_intervals_closure<InputIterator,OutputIterator,BinaryFunction,Decomposition,Context> Closure; |
|
typedef typename thrust::iterator_value<OutputIterator>::type OutputType; |
|
|
|
detail::launch_calculator<Closure> calculator; |
|
|
|
thrust::tuple<size_t,size_t,size_t> config = calculator.with_variable_block_size_available_smem(); |
|
|
|
//size_t max_blocks = thrust::get<0>(config); |
|
size_t block_size = thrust::get<1>(config); |
|
size_t max_memory = thrust::get<2>(config); |
|
|
|
// determine shared array size |
|
size_t shared_array_size = thrust::min(max_memory / sizeof(OutputType), block_size); |
|
size_t shared_array_bytes = sizeof(OutputType) * shared_array_size; |
|
|
|
// TODO if (shared_array_size < 1) throw cuda exception "insufficient shared memory" |
|
|
|
Closure closure(input, output, binary_op, decomp, shared_array_size); |
|
detail::launch_closure(closure, decomp.size(), block_size, shared_array_bytes); |
|
} |
|
|
|
__THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_END |
|
|
|
} // end namespace detail |
|
} // end namespace cuda |
|
} // end namespace system |
|
} // end namespace thrust |
|
|
|
|