GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

351 lines
9.7 KiB

/**
* Blake-256 Cuda Kernel (Tested on SM 5.0)
*
* Tanguy Pruvot - Aug. 2014
*/
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
#include <stdint.h>
#include <memory.h>
}
/* threads per block */
#define TPB 128
/* hash by cpu with blake 256 */
extern "C" void blake32hash(void *output, const void *input)
{
unsigned char hash[64];
sph_blake256_context ctx;
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
memcpy(output, hash, 32);
}
#include "cuda_helper.h"
// in cpu-miner.c
extern bool opt_n_threads;
extern bool opt_benchmark;
extern int device_map[8];
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
__constant__
static uint32_t __align__(32) c_PaddedMessage80[32]; // padded message (80 bytes + padding)
__constant__
static uint32_t __align__(32) c_Target[8];
#define MAXU 0xffffffffU
static uint32_t *d_resNounce[8];
static uint32_t *h_resNounce[8];
__constant__
#ifdef WIN32
/* what the fuck ! */
static uint8_t c_sigma[16][16];
const uint8_t host_sigma[16][16] =
#else
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
static uint32_t __align__(32) c_sigma[16][16];
const uint32_t host_sigma[16][16]
#endif
= {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
__device__ __constant__
static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
__device__ __constant__
static const uint32_t __align__(32) c_u256[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#if 0
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0x0), Mx(r, 0x1), CSx(r, 0x0), CSx(r, 0x1), v[0], v[4], v[0x8], v[0xC]); \
GS(Mx(r, 0x2), Mx(r, 0x3), CSx(r, 0x2), CSx(r, 0x3), v[1], v[5], v[0x9], v[0xD]); \
GS(Mx(r, 0x4), Mx(r, 0x5), CSx(r, 0x4), CSx(r, 0x5), v[2], v[6], v[0xA], v[0xE]); \
GS(Mx(r, 0x6), Mx(r, 0x7), CSx(r, 0x6), CSx(r, 0x7), v[3], v[7], v[0xB], v[0xF]); \
GS(Mx(r, 0x8), Mx(r, 0x9), CSx(r, 0x8), CSx(r, 0x9), v[0], v[5], v[0xA], v[0xF]); \
GS(Mx(r, 0xA), Mx(r, 0xB), CSx(r, 0xA), CSx(r, 0xB), v[1], v[6], v[0xB], v[0xC]); \
GS(Mx(r, 0xC), Mx(r, 0xD), CSx(r, 0xC), CSx(r, 0xD), v[2], v[7], v[0x8], v[0xD]); \
GS(Mx(r, 0xE), Mx(r, 0xF), CSx(r, 0xE), CSx(r, 0xF), v[3], v[4], v[0x9], v[0xE]); \
} while (0)
#endif
#define GS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[i][x]; \
const uint32_t idx2 = c_sigma[i][x+1]; \
v[a] += (m[idx1] ^ u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
\
v[a] += (m[idx2] ^ u256[idx1]) + v[b]; \
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
#define BLAKE256_ROUNDS 14
__device__ static
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0)
{
uint32_t /* __align__(8) */ v[16];
uint32_t /* __align__(8) */ m[16];
const uint32_t* u256 = c_u256;
//#pragma unroll
for (int i = 0; i < 16; ++i) {
m[i] = block[i];
}
//#pragma unroll 8
for(int i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = u256[0];
v[ 9] = u256[1];
v[10] = u256[2];
v[11] = u256[3];
v[12] = u256[4] ^ T0;
v[13] = u256[5] ^ T0;
v[14] = u256[6];
v[15] = u256[7];
//#pragma unroll
for (int i = 0; i < BLAKE256_ROUNDS; i++) {
/* column step */
GS(0, 4, 0x8, 0xC, 0);
GS(1, 5, 0x9, 0xD, 2);
GS(2, 6, 0xA, 0xE, 4);
GS(3, 7, 0xB, 0xF, 6);
/* diagonal step */
GS(0, 5, 0xA, 0xF, 0x8);
GS(1, 6, 0xB, 0xC, 0xA);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
}
//#pragma unroll 16
for(int i = 0; i < 16; i++)
h[i % 8] ^= v[i];
}
__global__
void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nounce = startNounce + thread;
uint32_t /* __align__(8) */ msg[16];
uint32_t h[8];
#pragma unroll
for(int i=0; i<8; i++)
h[i] = c_IV256[i];
blake256_compress(h, c_PaddedMessage80, 0x200); /* 512 = 0x200 */
// ------ Close: Bytes 64 to 80 ------
msg[0] = c_PaddedMessage80[16];
msg[1] = c_PaddedMessage80[17];
msg[2] = c_PaddedMessage80[18];
msg[3] = nounce; /* our tested value */
msg[4] = 0x80000000UL; //cuda_swab32(0x80U);
msg[5] = 0; // uchar[17 to 55]
msg[6] = 0;
msg[7] = 0;
msg[8] = 0;
msg[9] = 0;
msg[10] = 0;
msg[11] = 0;
msg[12] = 0;
msg[13] = 1;
msg[14] = 0;
msg[15] = 0x280;
blake256_compress(h, msg, 0x280);
for (int i = 7; i >= 0; i--) {
uint32_t hash = cuda_swab32(h[i]);
if (hash > c_Target[i]) {
return;
}
if (hash < c_Target[i]) {
break;
}
}
/* keep the smallest nounce, hmm... */
if(resNounce[0] > nounce)
resNounce[0] = nounce;
}
}
__host__
uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce)
{
const int threadsperblock = TPB;
uint32_t result = MAXU;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNounce[thr_id], 0xff, sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_resNounce[thr_id]);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
cudaThreadSynchronize();
result = *h_resNounce[thr_id];
}
return result;
}
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
{
uint32_t PaddedMessage[32];
memcpy(PaddedMessage, pdata, 80);
memset(&PaddedMessage[20], 0, 48);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, sizeof(PaddedMessage), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, ptarget, 32, 0, cudaMemcpyHostToDevice));
}
extern "C" int scanhash_blake32(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
const uint32_t first_nonce = pdata[19];
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint32_t throughput = min(TPB * 2048, max_nonce - first_nonce);
int rc = 0;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x00000f;
if (!init[thr_id]) {
if (opt_n_threads > 1) {
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id]));
}
CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], sizeof(uint32_t)));
init[thr_id] = true;
}
if (throughput < (TPB * 2048))
applog(LOG_WARNING, "throughput=%u, start=%x, max=%x", throughput, first_nonce, max_nonce);
blake256_cpu_setBlock_80(pdata, ptarget);
do {
// GPU HASH
uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19]);
if (foundNonce != 0xffffffff)
{
uint32_t endiandata[20];
uint32_t vhashcpu[8];
uint32_t Htarg = ptarget[7];
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
if (opt_debug && !opt_quiet) {
applog(LOG_DEBUG, "throughput=%u, start=%x, max=%x, pdata=%08x...%08x",
throughput, first_nonce, max_nonce, endiandata[0], endiandata[7]);
applog_hash((unsigned char *)pdata);
}
be32enc(&endiandata[19], foundNonce);
blake32hash(vhashcpu, endiandata);
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget))
{
pdata[19] = foundNonce;
rc = 1;
goto exit_scan;
}
else if (vhashcpu[7] > Htarg) {
applog(LOG_WARNING, "GPU #%d: result for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[7], Htarg);
}
else if (vhashcpu[6] > ptarget[6]) {
applog(LOG_WARNING, "GPU #%d: hash[6] for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[6], ptarget[6]);
}
else {
applog(LOG_WARNING, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce);
}
}
pdata[19] += throughput;
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
exit_scan:
*hashes_done = pdata[19] - first_nonce + 1;
// reset the device to allow multiple instances
if (opt_n_threads == 1) {
CUDA_SAFE_CALL(cudaDeviceReset());
init[thr_id] = false;
}
// wait proper end of all threads
cudaDeviceSynchronize();
return rc;
}