You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
469 lines
12 KiB
469 lines
12 KiB
/** |
|
* Lyra2 (v2) CUDA Implementation |
|
* |
|
* Based on djm34/VTC sources and incredible 2x boost by Nanashi Meiyo-Meijin (May 2016) |
|
*/ |
|
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <memory.h> |
|
|
|
#include "cuda_lyra2v2_sm3.cuh" |
|
|
|
#ifdef __INTELLISENSE__ |
|
/* just for vstudio code colors */ |
|
#define __CUDA_ARCH__ 500 |
|
#endif |
|
|
|
#define TPB 32 |
|
|
|
#if __CUDA_ARCH__ >= 500 |
|
|
|
#include "cuda_lyra2_vectors.h" |
|
|
|
#define Nrow 4 |
|
#define Ncol 4 |
|
#define memshift 3 |
|
|
|
__device__ uint2x4 *DMatrix; |
|
|
|
__device__ __forceinline__ uint2 LD4S(const int index) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; |
|
} |
|
|
|
__device__ __forceinline__ void ST4S(const int index, const uint2 data) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data; |
|
} |
|
|
|
__device__ __forceinline__ uint2 shuffle2(uint2 a, uint32_t b, uint32_t c) |
|
{ |
|
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); |
|
} |
|
|
|
__device__ __forceinline__ |
|
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d) |
|
{ |
|
a += b; d ^= a; d = SWAPUINT2(d); |
|
c += d; b ^= c; b = ROR2(b, 24); |
|
a += b; d ^= a; d = ROR2(d, 16); |
|
c += d; b ^= c; b = ROR2(b, 63); |
|
} |
|
|
|
__device__ __forceinline__ |
|
void round_lyra_v5(uint2x4 s[4]) |
|
{ |
|
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x); |
|
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y); |
|
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z); |
|
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w); |
|
|
|
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w); |
|
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x); |
|
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y); |
|
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z); |
|
} |
|
|
|
__device__ __forceinline__ |
|
void round_lyra_v5(uint2 s[4]) |
|
{ |
|
Gfunc_v5(s[0], s[1], s[2], s[3]); |
|
s[1] = shuffle2(s[1], threadIdx.x + 1, 4); |
|
s[2] = shuffle2(s[2], threadIdx.x + 2, 4); |
|
s[3] = shuffle2(s[3], threadIdx.x + 3, 4); |
|
Gfunc_v5(s[0], s[1], s[2], s[3]); |
|
s[1] = shuffle2(s[1], threadIdx.x + 3, 4); |
|
s[2] = shuffle2(s[2], threadIdx.x + 2, 4); |
|
s[3] = shuffle2(s[3], threadIdx.x + 1, 4); |
|
} |
|
|
|
__device__ __forceinline__ |
|
void reduceDuplexRowSetup2(uint2 state[4]) |
|
{ |
|
uint2 state1[Ncol][3], state0[Ncol][3], state2[3]; |
|
int i, j; |
|
|
|
#pragma unroll |
|
for (int i = 0; i < Ncol; i++) |
|
{ |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state0[Ncol - i - 1][j] = state[j]; |
|
round_lyra_v5(state); |
|
} |
|
|
|
//#pragma unroll 4 |
|
for (i = 0; i < Ncol; i++) |
|
{ |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= state0[i][j]; |
|
|
|
round_lyra_v5(state); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state1[Ncol - i - 1][j] = state0[i][j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state1[Ncol - i - 1][j] ^= state[j]; |
|
} |
|
|
|
for (i = 0; i < Ncol; i++) |
|
{ |
|
const uint32_t s0 = memshift * Ncol * 0 + i * memshift; |
|
const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= state1[i][j] + state0[i][j]; |
|
|
|
round_lyra_v5(state); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state2[j] = state1[i][j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state2[j] ^= state[j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s2 + j, state2[j]); |
|
|
|
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
|
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
|
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) { |
|
state0[i][0] ^= Data2; |
|
state0[i][1] ^= Data0; |
|
state0[i][2] ^= Data1; |
|
} else { |
|
state0[i][0] ^= Data0; |
|
state0[i][1] ^= Data1; |
|
state0[i][2] ^= Data2; |
|
} |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s0 + j, state0[i][j]); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state0[i][j] = state2[j]; |
|
|
|
} |
|
|
|
for (i = 0; i < Ncol; i++) |
|
{ |
|
const uint32_t s1 = memshift * Ncol * 1 + i*memshift; |
|
const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= state1[i][j] + state0[Ncol - i - 1][j]; |
|
|
|
round_lyra_v5(state); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state0[Ncol - i - 1][j] ^= state[j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s3 + j, state0[Ncol - i - 1][j]); |
|
|
|
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
|
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
|
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) { |
|
state1[i][0] ^= Data2; |
|
state1[i][1] ^= Data0; |
|
state1[i][2] ^= Data1; |
|
} else { |
|
state1[i][0] ^= Data0; |
|
state1[i][1] ^= Data1; |
|
state1[i][2] ^= Data2; |
|
} |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s1 + j, state1[i][j]); |
|
} |
|
} |
|
|
|
__device__ |
|
void reduceDuplexRowt2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4]) |
|
{ |
|
uint2 state1[3], state2[3]; |
|
const uint32_t ps1 = memshift * Ncol * rowIn; |
|
const uint32_t ps2 = memshift * Ncol * rowInOut; |
|
const uint32_t ps3 = memshift * Ncol * rowOut; |
|
|
|
for (int i = 0; i < Ncol; i++) |
|
{ |
|
const uint32_t s1 = ps1 + i*memshift; |
|
const uint32_t s2 = ps2 + i*memshift; |
|
const uint32_t s3 = ps3 + i*memshift; |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state1[j] = LD4S(s1 + j); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state2[j] = LD4S(s2 + j); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state[j] ^= state1[j] + state2[j]; |
|
|
|
round_lyra_v5(state); |
|
|
|
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
|
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
|
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) { |
|
state2[0] ^= Data2; |
|
state2[1] ^= Data0; |
|
state2[2] ^= Data1; |
|
} else { |
|
state2[0] ^= Data0; |
|
state2[1] ^= Data1; |
|
state2[2] ^= Data2; |
|
} |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
ST4S(s2 + j, state2[j]); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
ST4S(s3 + j, LD4S(s3 + j) ^ state[j]); |
|
} |
|
} |
|
|
|
__device__ |
|
void reduceDuplexRowt2x4(const int rowInOut, uint2 state[4]) |
|
{ |
|
const int rowIn = 2; |
|
const int rowOut = 3; |
|
|
|
int i, j; |
|
uint2 last[3]; |
|
const uint32_t ps1 = memshift * Ncol * rowIn; |
|
const uint32_t ps2 = memshift * Ncol * rowInOut; |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
last[j] = LD4S(ps2 + j); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state[j] ^= LD4S(ps1 + j) + last[j]; |
|
|
|
round_lyra_v5(state); |
|
|
|
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
|
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
|
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) { |
|
last[0] ^= Data2; |
|
last[1] ^= Data0; |
|
last[2] ^= Data1; |
|
} else { |
|
last[0] ^= Data0; |
|
last[1] ^= Data1; |
|
last[2] ^= Data2; |
|
} |
|
|
|
if (rowInOut == rowOut) |
|
{ |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
last[j] ^= state[j]; |
|
} |
|
|
|
for (i = 1; i < Ncol; i++) |
|
{ |
|
const uint32_t s1 = ps1 + i*memshift; |
|
const uint32_t s2 = ps2 + i*memshift; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= LD4S(s1 + j) + LD4S(s2 + j); |
|
|
|
round_lyra_v5(state); |
|
} |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state[j] ^= last[j]; |
|
} |
|
|
|
__global__ |
|
__launch_bounds__(TPB, 1) |
|
void lyra2v2_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) |
|
{ |
|
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
|
|
|
const uint2x4 blake2b_IV[2] = { |
|
0xf3bcc908UL, 0x6a09e667UL, 0x84caa73bUL, 0xbb67ae85UL, |
|
0xfe94f82bUL, 0x3c6ef372UL, 0x5f1d36f1UL, 0xa54ff53aUL, |
|
0xade682d1UL, 0x510e527fUL, 0x2b3e6c1fUL, 0x9b05688cUL, |
|
0xfb41bd6bUL, 0x1f83d9abUL, 0x137e2179UL, 0x5be0cd19UL |
|
}; |
|
|
|
const uint2x4 Mask[2] = { |
|
0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL, |
|
0x00000020UL, 0x00000000UL, 0x00000001UL, 0x00000000UL, |
|
0x00000004UL, 0x00000000UL, 0x00000004UL, 0x00000000UL, |
|
0x00000080UL, 0x00000000UL, 0x00000000UL, 0x01000000UL |
|
}; |
|
|
|
uint2x4 state[4]; |
|
|
|
if (thread < threads) |
|
{ |
|
state[0].x = state[1].x = __ldg(&inputHash[thread + threads * 0]); |
|
state[0].y = state[1].y = __ldg(&inputHash[thread + threads * 1]); |
|
state[0].z = state[1].z = __ldg(&inputHash[thread + threads * 2]); |
|
state[0].w = state[1].w = __ldg(&inputHash[thread + threads * 3]); |
|
state[2] = blake2b_IV[0]; |
|
state[3] = blake2b_IV[1]; |
|
|
|
for (int i = 0; i<12; i++) |
|
round_lyra_v5(state); |
|
|
|
state[0] ^= Mask[0]; |
|
state[1] ^= Mask[1]; |
|
|
|
for (int i = 0; i<12; i++) |
|
round_lyra_v5(state); |
|
|
|
DMatrix[blockDim.x * gridDim.x * 0 + thread] = state[0]; |
|
DMatrix[blockDim.x * gridDim.x * 1 + thread] = state[1]; |
|
DMatrix[blockDim.x * gridDim.x * 2 + thread] = state[2]; |
|
DMatrix[blockDim.x * gridDim.x * 3 + thread] = state[3]; |
|
} |
|
} |
|
|
|
__global__ |
|
__launch_bounds__(TPB, 1) |
|
void lyra2v2_gpu_hash_32_2(uint32_t threads) |
|
{ |
|
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y; |
|
|
|
if (thread < threads) |
|
{ |
|
uint2 state[4]; |
|
state[0] = ((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
state[1] = ((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
state[2] = ((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
state[3] = ((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
|
|
reduceDuplexRowSetup2(state); |
|
|
|
uint32_t rowa; |
|
int prev = 3; |
|
|
|
for (int i = 0; i < 3; i++) |
|
{ |
|
rowa = __shfl(state[0].x, 0, 4) & 3; |
|
reduceDuplexRowt2(prev, rowa, i, state); |
|
prev = i; |
|
} |
|
|
|
rowa = __shfl(state[0].x, 0, 4) & 3; |
|
reduceDuplexRowt2x4(rowa, state); |
|
|
|
((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0]; |
|
((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1]; |
|
((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2]; |
|
((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3]; |
|
} |
|
} |
|
|
|
__global__ |
|
__launch_bounds__(TPB, 1) |
|
void lyra2v2_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) |
|
{ |
|
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
|
|
|
uint2x4 state[4]; |
|
|
|
if (thread < threads) |
|
{ |
|
state[0] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 0 + thread]); |
|
state[1] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 1 + thread]); |
|
state[2] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 2 + thread]); |
|
state[3] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 3 + thread]); |
|
|
|
for (int i = 0; i < 12; i++) |
|
round_lyra_v5(state); |
|
|
|
outputHash[thread + threads * 0] = state[0].x; |
|
outputHash[thread + threads * 1] = state[0].y; |
|
outputHash[thread + threads * 2] = state[0].z; |
|
outputHash[thread + threads * 3] = state[0].w; |
|
} |
|
} |
|
|
|
#else |
|
#include "cuda_helper.h" |
|
#if __CUDA_ARCH__ < 200 |
|
__device__ void* DMatrix; |
|
#endif |
|
__global__ void lyra2v2_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) {} |
|
__global__ void lyra2v2_gpu_hash_32_2(uint32_t threads) {} |
|
__global__ void lyra2v2_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) {} |
|
#endif |
|
|
|
|
|
__host__ |
|
void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix) |
|
{ |
|
cuda_get_arch(thr_id); |
|
// just assign the device pointer allocated in main loop |
|
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); |
|
} |
|
|
|
__host__ |
|
void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order) |
|
{ |
|
int dev_id = device_map[thr_id % MAX_GPUS]; |
|
|
|
if (device_sm[dev_id] >= 500) { |
|
|
|
const uint32_t tpb = TPB; |
|
|
|
dim3 grid2((threads + tpb - 1) / tpb); |
|
dim3 block2(tpb); |
|
dim3 grid4((threads * 4 + tpb - 1) / tpb); |
|
dim3 block4(4, tpb / 4); |
|
|
|
lyra2v2_gpu_hash_32_1 <<< grid2, block2 >>> (threads, (uint2*)g_hash); |
|
lyra2v2_gpu_hash_32_2 <<< grid4, block4, 48 * sizeof(uint2) * tpb >>> (threads); |
|
lyra2v2_gpu_hash_32_3 <<< grid2, block2 >>> (threads, (uint2*)g_hash); |
|
|
|
} else { |
|
|
|
uint32_t tpb = 16; |
|
if (cuda_arch[dev_id] >= 350) tpb = TPB35; |
|
else if (cuda_arch[dev_id] >= 300) tpb = TPB30; |
|
else if (cuda_arch[dev_id] >= 200) tpb = TPB20; |
|
|
|
dim3 grid((threads + tpb - 1) / tpb); |
|
dim3 block(tpb); |
|
lyra2v2_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)g_hash); |
|
|
|
} |
|
}
|
|
|