// // =============== SHA256 part on nVidia GPU ====================== // // NOTE: compile this .cu module for compute_10,sm_10 with --maxrregcount=64 // #include <map> #include <cuda_runtime.h> #include "miner.h" #include "salsa_kernel.h" #include "sha256.h" // define some error checking macros #define DELIMITER '/' #define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ ) #undef checkCudaErrors #define checkCudaErrors(x) { \ cudaGetLastError(); \ x; \ cudaError_t err = cudaGetLastError(); \ if (err != cudaSuccess && !abort_flag) \ applog(LOG_ERR, "GPU #%d: cudaError %d (%s) (%s line %d)\n", (int) device_map[thr_id], err, cudaGetErrorString(err), __FILENAME__, __LINE__); \ } // from salsa_kernel.cu extern std::map<int, uint32_t *> context_idata[2]; extern std::map<int, uint32_t *> context_odata[2]; extern std::map<int, cudaStream_t> context_streams[2]; extern std::map<int, uint32_t *> context_tstate[2]; extern std::map<int, uint32_t *> context_ostate[2]; extern std::map<int, uint32_t *> context_hash[2]; static const uint32_t host_sha256_h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t host_sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + sha256_k[i]) static const uint32_t host_keypad[12] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 }; static const uint32_t host_innerpad[11] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 }; static const uint32_t host_outerpad[8] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 }; static const uint32_t host_finalblk[16] = { 0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 }; // // CUDA code // __constant__ uint32_t sha256_h[8]; __constant__ uint32_t sha256_k[64]; __constant__ uint32_t keypad[12]; __constant__ uint32_t innerpad[11]; __constant__ uint32_t outerpad[8]; __constant__ uint32_t finalblk[16]; __constant__ uint32_t pdata[20]; __constant__ uint32_t midstate[8]; __device__ void mycpy12(uint32_t *d, const uint32_t *s) { #pragma unroll 3 for (int k=0; k < 3; k++) d[k] = s[k]; } __device__ void mycpy16(uint32_t *d, const uint32_t *s) { #pragma unroll 4 for (int k=0; k < 4; k++) d[k] = s[k]; } __device__ void mycpy32(uint32_t *d, const uint32_t *s) { #pragma unroll 8 for (int k=0; k < 8; k++) d[k] = s[k]; } __device__ void mycpy44(uint32_t *d, const uint32_t *s) { #pragma unroll 11 for (int k=0; k < 11; k++) d[k] = s[k]; } __device__ void mycpy48(uint32_t *d, const uint32_t *s) { #pragma unroll 12 for (int k=0; k < 12; k++) d[k] = s[k]; } __device__ void mycpy64(uint32_t *d, const uint32_t *s) { #pragma unroll 16 for (int k=0; k < 16; k++) d[k] = s[k]; } __device__ uint32_t cuda_swab32(uint32_t x) { return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u) | ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu)); } __device__ void mycpy32_swab32(uint32_t *d, const uint32_t *s) { #pragma unroll 8 for (int k=0; k < 8; k++) d[k] = cuda_swab32(s[k]); } __device__ void mycpy64_swab32(uint32_t *d, const uint32_t *s) { #pragma unroll 16 for (int k=0; k < 16; k++) d[k] = cuda_swab32(s[k]); } __device__ void cuda_sha256_init(uint32_t *state) { mycpy32(state, sha256_h); } /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. Modified for lower register use. */ __device__ void cuda_sha256_transform(uint32_t *state, const uint32_t *block) { uint32_t W[64]; // only 4 of these are accessed during each partial Mix uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Initialize working variables. */ mycpy32(S, state); /* 2. Prepare message schedule W and Mix. */ mycpy16(W, block); RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); RNDr(S, W, 3); mycpy16(W+4, block+4); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); mycpy16(W+8, block+8); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); mycpy16(W+12, block+12); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); #pragma unroll 2 for (i = 16; i < 20; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); #pragma unroll 2 for (i = 20; i < 24; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); #pragma unroll 2 for (i = 24; i < 28; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); #pragma unroll 2 for (i = 28; i < 32; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); #pragma unroll 2 for (i = 32; i < 36; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); #pragma unroll 2 for (i = 36; i < 40; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); #pragma unroll 2 for (i = 40; i < 44; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); #pragma unroll 2 for (i = 44; i < 48; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); #pragma unroll 2 for (i = 48; i < 52; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); #pragma unroll 2 for (i = 52; i < 56; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); #pragma unroll 2 for (i = 56; i < 60; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); #pragma unroll 2 for (i = 60; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); /* 3. Mix local working variables into global state */ #pragma unroll 8 for (i = 0; i < 8; i++) state[i] += S[i]; } // // HMAC SHA256 functions, modified to work with pdata and nonce directly // __device__ void cuda_HMAC_SHA256_80_init(uint32_t *tstate, uint32_t *ostate, uint32_t nonce) { uint32_t ihash[8]; uint32_t pad[16]; int i; /* tstate is assumed to contain the midstate of key */ mycpy12(pad, pdata + 16); pad[3] = nonce; mycpy48(pad + 4, keypad); cuda_sha256_transform(tstate, pad); mycpy32(ihash, tstate); cuda_sha256_init(ostate); #pragma unroll 8 for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x5c5c5c5c; #pragma unroll 8 for (i=8; i < 16; i++) pad[i] = 0x5c5c5c5c; cuda_sha256_transform(ostate, pad); cuda_sha256_init(tstate); #pragma unroll 8 for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x36363636; #pragma unroll 8 for (i=8; i < 16; i++) pad[i] = 0x36363636; cuda_sha256_transform(tstate, pad); } __device__ void cuda_PBKDF2_SHA256_80_128(const uint32_t *tstate, const uint32_t *ostate, uint32_t *output, uint32_t nonce) { uint32_t istate[8], ostate2[8]; uint32_t ibuf[16], obuf[16]; mycpy32(istate, tstate); cuda_sha256_transform(istate, pdata); mycpy12(ibuf, pdata + 16); ibuf[3] = nonce; ibuf[4] = 1; mycpy44(ibuf + 5, innerpad); mycpy32(obuf, istate); mycpy32(obuf + 8, outerpad); cuda_sha256_transform(obuf, ibuf); mycpy32(ostate2, ostate); cuda_sha256_transform(ostate2, obuf); mycpy32_swab32(output, ostate2); // TODO: coalescing would be desired mycpy32(obuf, istate); ibuf[4] = 2; cuda_sha256_transform(obuf, ibuf); mycpy32(ostate2, ostate); cuda_sha256_transform(ostate2, obuf); mycpy32_swab32(output+8, ostate2); // TODO: coalescing would be desired mycpy32(obuf, istate); ibuf[4] = 3; cuda_sha256_transform(obuf, ibuf); mycpy32(ostate2, ostate); cuda_sha256_transform(ostate2, obuf); mycpy32_swab32(output+16, ostate2); // TODO: coalescing would be desired mycpy32(obuf, istate); ibuf[4] = 4; cuda_sha256_transform(obuf, ibuf); mycpy32(ostate2, ostate); cuda_sha256_transform(ostate2, obuf); mycpy32_swab32(output+24, ostate2); // TODO: coalescing would be desired } __global__ void cuda_pre_sha256(uint32_t g_inp[32], uint32_t g_tstate_ext[8], uint32_t g_ostate_ext[8], uint32_t nonce) { nonce += (blockIdx.x * blockDim.x) + threadIdx.x; g_inp += 32 * ((blockIdx.x * blockDim.x) + threadIdx.x); g_tstate_ext += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x); g_ostate_ext += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x); uint32_t tstate[8], ostate[8]; mycpy32(tstate, midstate); cuda_HMAC_SHA256_80_init(tstate, ostate, nonce); mycpy32(g_tstate_ext, tstate); // TODO: coalescing would be desired mycpy32(g_ostate_ext, ostate); // TODO: coalescing would be desired cuda_PBKDF2_SHA256_80_128(tstate, ostate, g_inp, nonce); } __global__ void cuda_post_sha256(uint32_t g_output[8], uint32_t g_tstate_ext[8], uint32_t g_ostate_ext[8], uint32_t g_salt_ext[32]) { g_output += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x); g_tstate_ext += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x); g_ostate_ext += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x); g_salt_ext += 32 * ((blockIdx.x * blockDim.x) + threadIdx.x); uint32_t tstate[16]; mycpy32(tstate, g_tstate_ext); // TODO: coalescing would be desired uint32_t halfsalt[16]; mycpy64_swab32(halfsalt, g_salt_ext); // TODO: coalescing would be desired cuda_sha256_transform(tstate, halfsalt); mycpy64_swab32(halfsalt, g_salt_ext+16); // TODO: coalescing would be desired cuda_sha256_transform(tstate, halfsalt); cuda_sha256_transform(tstate, finalblk); uint32_t buf[16]; mycpy32(buf, tstate); mycpy32(buf + 8, outerpad); uint32_t ostate[16]; mycpy32(ostate, g_ostate_ext); cuda_sha256_transform(ostate, buf); mycpy32_swab32(g_output, ostate); // TODO: coalescing would be desired } // // callable host code to initialize constants and to call kernels // void prepare_sha256(int thr_id, uint32_t host_pdata[20], uint32_t host_midstate[8]) { static bool init[MAX_GPUS] = { 0 }; if (!init[thr_id]) { checkCudaErrors(cudaMemcpyToSymbol(sha256_h, host_sha256_h, sizeof(host_sha256_h), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(sha256_k, host_sha256_k, sizeof(host_sha256_k), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(keypad, host_keypad, sizeof(host_keypad), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(innerpad, host_innerpad, sizeof(host_innerpad), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(outerpad, host_outerpad, sizeof(host_outerpad), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(finalblk, host_finalblk, sizeof(host_finalblk), 0, cudaMemcpyHostToDevice)); init[thr_id] = true; } checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(midstate, host_midstate, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); } void pre_sha256(int thr_id, int stream, uint32_t nonce, int throughput) { dim3 block(128); dim3 grid((throughput+127)/128); cuda_pre_sha256<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_idata[stream][thr_id], context_tstate[stream][thr_id], context_ostate[stream][thr_id], nonce); } void post_sha256(int thr_id, int stream, int throughput) { dim3 block(128); dim3 grid((throughput+127)/128); cuda_post_sha256<<<grid, block, 0, context_streams[stream][thr_id]>>>(context_hash[stream][thr_id], context_tstate[stream][thr_id], context_ostate[stream][thr_id], context_odata[stream][thr_id]); }