extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_skein.h" #include "sph/sph_keccak.h" #include "sph/sph_cubehash.h" #include "lyra2/Lyra2.h" } #include "miner.h" #include "cuda_helper.h" #include static uint64_t *d_hash[MAX_GPUS]; static uint64_t* d_matrix[MAX_GPUS]; extern void blake256_cpu_init(int thr_id, uint32_t threads); extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); extern void blake256_cpu_setBlock_80(uint32_t *pdata); extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void keccak256_cpu_init(int thr_id, uint32_t threads); extern void keccak256_cpu_free(int thr_id); extern void blakeKeccak256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); extern void blakeKeccakcube256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void skein256_cpu_init(int thr_id, uint32_t threads); extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order); extern void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix); //extern void bmw256_setTarget(const void *ptarget); extern void bmw256_cpu_init(int thr_id, uint32_t threads); extern void bmw256_cpu_free(int thr_id); extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces, uint32_t Target); extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces, uint32_t Target, uint32_t **result); void lyra2v2_hash(void *state, const void *input) { uint32_t hashA[8], hashB[8]; sph_blake256_context ctx_blake; sph_keccak256_context ctx_keccak; sph_skein256_context ctx_skein; sph_bmw256_context ctx_bmw; sph_cubehash256_context ctx_cube; sph_blake256_set_rounds(14); sph_blake256_init(&ctx_blake); sph_blake256(&ctx_blake, input, 80); sph_blake256_close(&ctx_blake, hashA); sph_keccak256_init(&ctx_keccak); sph_keccak256(&ctx_keccak, hashA, 32); sph_keccak256_close(&ctx_keccak, hashB); sph_cubehash256_init(&ctx_cube); sph_cubehash256(&ctx_cube, hashB, 32); sph_cubehash256_close(&ctx_cube, hashA); LYRA2(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4); sph_skein256_init(&ctx_skein); sph_skein256(&ctx_skein, hashB, 32); sph_skein256_close(&ctx_skein, hashA); sph_cubehash256_init(&ctx_cube); sph_cubehash256(&ctx_cube, hashA, 32); sph_cubehash256_close(&ctx_cube, hashB); sph_bmw256_init(&ctx_bmw); sph_bmw256(&ctx_bmw, hashB, 32); sph_bmw256_close(&ctx_bmw, hashA); memcpy(state, hashA, 32); } #ifdef _DEBUG #define TRACE(algo) { \ if (max_nonce == 1 && pdata[19] <= 1) { \ uint32_t* debugbuf = NULL; \ cudaMallocHost(&debugbuf, 32); \ cudaMemcpy(debugbuf, d_hash[thr_id], 32, cudaMemcpyDeviceToHost); \ printf("lyra2 %s %08x %08x %08x %08x...%08x... ¥n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \ swab32(debugbuf[2]), swab32(debugbuf[3]), swab32(debugbuf[7])); \ cudaFreeHost(debugbuf); \ } \ } #else #define TRACE(algo) {} #endif static bool init[MAX_GPUS] = { 0 }; static uint32_t throughput[MAX_GPUS] = { 0 }; extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; if (opt_benchmark) ptarget[7] = 0x000f; if (!init[thr_id]) { int dev_id = device_map[thr_id]; cudaDeviceProp props; cudaGetDeviceProperties(&props, dev_id); int intensity = 0; // Pascal if (strstr(props.name, "1080")) intensity = 22; else if (strstr(props.name, "1070")) intensity = 21; // Maxwell else if (strstr(props.name, "TITAN X")) intensity = 21; else if (strstr(props.name, "980")) intensity = 21; else if (strstr(props.name, "970")) intensity = 20; else if (strstr(props.name, "960")) intensity = 20; else if (strstr(props.name, "950")) intensity = 19; else if (strstr(props.name, "750 Ti")) intensity = 19; else if (strstr(props.name, "750")) intensity = 18; // Kepler〜Fermi else if (strstr(props.name, "TITAN Z")) intensity = 20; else if (strstr(props.name, "TITAN")) intensity = 19; else if (strstr(props.name, "780")) intensity = 19; else if (strstr(props.name, "760")) intensity = 18; else if (strstr(props.name, "730")) intensity = 16; else if (strstr(props.name, "720")) intensity = 15; else if (strstr(props.name, "710")) intensity = 16; else if (strstr(props.name, "690")) intensity = 20; else if (strstr(props.name, "680")) intensity = 19; else if (strstr(props.name, "660")) intensity = 18; else if (strstr(props.name, "650 Ti")) intensity = 18; else if (strstr(props.name, "640")) intensity = 17; else if (strstr(props.name, "630")) intensity = 16; else if (strstr(props.name, "620")) intensity = 15; else if (strstr(props.name, "90")) intensity = 18; //590 else if (strstr(props.name, "80")) intensity = 18; //480 580 else if (strstr(props.name, "70")) intensity = 18; //470 570 670 770 else if (strstr(props.name, "65")) intensity = 17; //465 else if (strstr(props.name, "60")) intensity = 17; //460 560 else if (strstr(props.name, "55")) intensity = 17; //555 else if (strstr(props.name, "50")) intensity = 17; //450 550Ti 650 else if (strstr(props.name, "45")) intensity = 16; //545 else if (strstr(props.name, "40")) intensity = 15; //440 else if (strstr(props.name, "30")) intensity = 15; //430 530 else if (strstr(props.name, "20")) intensity = 14; //420 520 else if (strstr(props.name, "10")) intensity = 14; //510 610 if (intensity != 0 && opt_eco_mode) intensity -= 3.0; if (intensity == 0) { intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 20 : 18; throughput[thr_id] = cuda_default_throughput(dev_id, 1UL << (int)intensity); } else { //uint32_t adds = 0; // double d = floor(intensity); /* if ((intensity - d) > 0.0) { adds = (uint32_t)floor((intensity - d) * (1 << (int)(d - 10.0)) * 1024; throughput = (1 << (int)d) + adds; gpulog(LOG_INFO, thr_id, "Adding %u threads to intensity %u, %u cuda threads", adds, (int)d, throughput); } else if (gpus_intensity[n] != (1 << (int)intensity)) { throughput = (1 << (int)intensity); applog(LOG_INFO, "Intensity set to %u, %u cuda threads", v, gpus_intensity[n]); } */ uint32_t temp = 1UL << intensity; throughput[thr_id] = cuda_default_throughput(dev_id, temp); if (temp == throughput[thr_id]) { gpulog(LOG_INFO, thr_id, "Intensity set to %u, %u cuda threads", intensity, throughput[thr_id]); } } cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); //blake256_cpu_init(thr_id, throughput); //keccak256_cpu_init(thr_id,throughput); skein256_cpu_init(thr_id, throughput[thr_id]); bmw256_cpu_init(thr_id, throughput[thr_id]); // SM 3 implentation requires a bit more memory //if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) // matrix_sz = 16 * sizeof(uint64_t) * 4 * 4; //else size_t matrix_sz = sizeof(uint64_t) * 4 * 4; CUDA_SAFE_CALL(cudaMalloc(&d_matrix[thr_id], matrix_sz * throughput[thr_id])); lyra2v2_cpu_init(thr_id, throughput[thr_id], d_matrix[thr_id]); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput[thr_id])); api_set_throughput(thr_id, throughput[thr_id]); init[thr_id] = true; } else throughput[thr_id] = min(throughput[thr_id], max_nonce - first_nonce); uint32_t endiandata[20]; for (int k = 0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); blake256_cpu_setBlock_80(pdata); //bmw256_setTarget(ptarget); //uint32_t *vhash64[2]; do { int order = 0; uint32_t foundNonces[2] = { 0, 0 }; blakeKeccak256_cpu_hash_80(thr_id, throughput[thr_id], pdata[19], d_hash[thr_id], order++); //blakeKeccakcube256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); TRACE("blake :"); //keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); TRACE("keccak :"); cubehash256_cpu_hash_32(thr_id, throughput[thr_id], pdata[19], d_hash[thr_id], order++); TRACE("cube :"); lyra2v2_cpu_hash_32(thr_id, throughput[thr_id], pdata[19], d_hash[thr_id], order++); TRACE("lyra2 :"); skein256_cpu_hash_32(thr_id, throughput[thr_id], pdata[19], d_hash[thr_id], order++); TRACE("skein :"); cubehash256_cpu_hash_32(thr_id, throughput[thr_id], pdata[19], d_hash[thr_id], order++); TRACE("cube :"); bmw256_cpu_hash_32(thr_id, throughput[thr_id], pdata[19], d_hash[thr_id], foundNonces, ptarget[7]); //bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], foundNonces, ptarget[7], vhash64); *hashes_done = pdata[19] - first_nonce + throughput[thr_id]; /*if (foundNonces[1] != 0) { if (fulltest(vhash64[0], ptarget)) { gpulog(LOG_WARNING, thr_id, "result two foundNonces!"); pdata[19] = foundNonces[1]; pdata[21] = foundNonces[0]; work_set_target_ratio(work, vhash64[0]); if (bn_hash_target_ratio(vhash64[1], ptarget) > work->shareratio) { work_set_target_ratio(work, vhash64[1]); } return 2; } } if (foundNonces[0] != 0) { if (fulltest(vhash64[0], ptarget)) { gpulog(LOG_WARNING, thr_id, "result one foundNonce!"); pdata[19] = foundNonces[0]; work_set_target_ratio(work, vhash64[0]); return 1; } }*/ if (foundNonces[0] != 0) { uint32_t vhash64[8]; be32enc(&endiandata[19], foundNonces[0]); lyra2v2_hash(vhash64, endiandata); if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) { int res = 1; work_set_target_ratio(work, vhash64); pdata[19] = foundNonces[0]; // check if there was another one... if (foundNonces[1] != 0) { be32enc(&endiandata[19], foundNonces[1]); lyra2v2_hash(vhash64, endiandata); pdata[21] = foundNonces[1]; xchg(pdata[19], pdata[21]); if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio) { work_set_target_ratio(work, vhash64); } res++; } return res; } else if (vhash64[7] > ptarget[7]) { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonces[0]); } } if ((uint64_t)throughput[thr_id] + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput[thr_id]; } while (!work_restart[thr_id].restart && !abort_flag); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_lyra2v2(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_matrix[thr_id]); bmw256_cpu_free(thr_id); //keccak256_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }