#include #ifdef __INTELLISENSE__ /* just for vstudio code colors */ #undef __CUDA_ARCH__ #define __CUDA_ARCH__ 500 #endif #include "cuda_helper.h" #define TPB50 32 #if __CUDA_ARCH__ == 500 #include "cuda_lyra2_vectors.h" #define Nrow 8 #define Ncol 8 #define memshift 3 __device__ uint2 *DMatrix; __device__ __forceinline__ uint2 LD4S(const int index) { extern __shared__ uint2 shared_mem[]; return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; } __device__ __forceinline__ void ST4S(const int index, const uint2 data) { extern __shared__ uint2 shared_mem[]; shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data; } #if __CUDA_ARCH__ >= 300 __device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) { return __shfl(a, b, c); } __device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) { return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); } __device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) { a1 = WarpShuffle(a1, b1, c); a2 = WarpShuffle(a2, b2, c); a3 = WarpShuffle(a3, b3, c); } #else __device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; uint32_t *_ptr = (uint32_t*)shared_mem; __threadfence_block(); uint32_t buf = _ptr[thread]; _ptr[thread] = a; __threadfence_block(); uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))]; __threadfence_block(); _ptr[thread] = buf; __threadfence_block(); return result; } __device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; __threadfence_block(); uint2 buf = shared_mem[thread]; shared_mem[thread] = a; __threadfence_block(); uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))]; __threadfence_block(); shared_mem[thread] = buf; __threadfence_block(); return result; } __device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; __threadfence_block(); uint2 buf = shared_mem[thread]; shared_mem[thread] = a1; __threadfence_block(); a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))]; __threadfence_block(); shared_mem[thread] = a2; __threadfence_block(); a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))]; __threadfence_block(); shared_mem[thread] = a3; __threadfence_block(); a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))]; __threadfence_block(); shared_mem[thread] = buf; __threadfence_block(); } #endif static __device__ __forceinline__ void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d) { a += b; d ^= a; d = SWAPUINT2(d); c += d; b ^= c; b = ROR2(b, 24); a += b; d ^= a; d = ROR2(d, 16); c += d; b ^= c; b = ROR2(b, 63); } __device__ __forceinline__ void round_lyra(uint2 s[4]) { Gfunc(s[0], s[1], s[2], s[3]); WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4); Gfunc(s[0], s[1], s[2], s[3]); WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4); } static __device__ __forceinline__ void round_lyra(uint2x4* s) { Gfunc(s[0].x, s[1].x, s[2].x, s[3].x); Gfunc(s[0].y, s[1].y, s[2].y, s[3].y); Gfunc(s[0].z, s[1].z, s[2].z, s[3].z); Gfunc(s[0].w, s[1].w, s[2].w, s[3].w); Gfunc(s[0].x, s[1].y, s[2].z, s[3].w); Gfunc(s[0].y, s[1].z, s[2].w, s[3].x); Gfunc(s[0].z, s[1].w, s[2].x, s[3].y); Gfunc(s[0].w, s[1].x, s[2].y, s[3].z); } static __device__ __forceinline__ void reduceDuplexV5(uint2 state[4], const uint32_t thread, const uint32_t threads) { uint2 state1[3], state2[3]; const uint32_t ps0 = (memshift * Ncol * 0 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps1 = (memshift * Ncol * 1 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps2 = (memshift * Ncol * 2 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps3 = (memshift * Ncol * 3 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps4 = (memshift * Ncol * 4 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps5 = (memshift * Ncol * 5 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps6 = (memshift * Ncol * 6 * threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps7 = (memshift * Ncol * 7 * threads + thread)*blockDim.x + threadIdx.x; for (int i = 0; i < 8; i++) { const uint32_t s0 = memshift * Ncol * 0 + (Ncol - 1 - i) * memshift; #pragma unroll for (int j = 0; j < 3; j++) ST4S(s0 + j, state[j]); round_lyra(state); } for (int i = 0; i < 8; i++) { const uint32_t s0 = memshift * Ncol * 0 + i * memshift; const uint32_t s1 = ps1 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = LD4S(s0 + j); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s1 + j*threads*blockDim.x) = state1[j] ^ state[j]; } // 1, 0, 2 for (int i = 0; i < 8; i++) { const uint32_t s0 = memshift * Ncol * 0 + i * memshift; const uint32_t s1 = ps1 + i * memshift* threads*blockDim.x; const uint32_t s2 = ps2 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = *(DMatrix + s1 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = LD4S(s0 + j); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s2 + j*threads*blockDim.x) = state1[j] ^ state[j]; //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) ST4S(s0 + j, state2[j]); } // 2, 1, 3 for (int i = 0; i < 8; i++) { const uint32_t s1 = ps1 + i * memshift* threads*blockDim.x; const uint32_t s2 = ps2 + i * memshift* threads*blockDim.x; const uint32_t s3 = ps3 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = *(DMatrix + s2 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = *(DMatrix + s1 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s3 + j*threads*blockDim.x) = state1[j] ^ state[j]; //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s1 + j*threads*blockDim.x) = state2[j]; } // 3, 0, 4 for (int i = 0; i < 8; i++) { const uint32_t ls0 = memshift * Ncol * 0 + i * memshift; const uint32_t s0 = ps0 + i * memshift* threads*blockDim.x; const uint32_t s3 = ps3 + i * memshift* threads*blockDim.x; const uint32_t s4 = ps4 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = *(DMatrix + s3 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = LD4S(ls0 + j); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s4 + j*threads*blockDim.x) = state1[j] ^ state[j]; //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s0 + j*threads*blockDim.x) = state2[j]; } // 4, 3, 5 for (int i = 0; i < 8; i++) { const uint32_t s3 = ps3 + i * memshift* threads*blockDim.x; const uint32_t s4 = ps4 + i * memshift* threads*blockDim.x; const uint32_t s5 = ps5 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = *(DMatrix + s4 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = *(DMatrix + s3 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s5 + j*threads*blockDim.x) = state1[j] ^ state[j]; //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s3 + j*threads*blockDim.x) = state2[j]; } // 5, 2, 6 for (int i = 0; i < 8; i++) { const uint32_t s2 = ps2 + i * memshift* threads*blockDim.x; const uint32_t s5 = ps5 + i * memshift* threads*blockDim.x; const uint32_t s6 = ps6 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = *(DMatrix + s5 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = *(DMatrix + s2 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s6 + j*threads*blockDim.x) = state1[j] ^ state[j]; //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s2 + j*threads*blockDim.x) = state2[j]; } // 6, 1, 7 for (int i = 0; i < 8; i++) { const uint32_t s1 = ps1 + i * memshift* threads*blockDim.x; const uint32_t s6 = ps6 + i * memshift* threads*blockDim.x; const uint32_t s7 = ps7 + (7 - i)*memshift* threads*blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = *(DMatrix + s6 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = *(DMatrix + s1 + j*threads*blockDim.x); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s7 + j*threads*blockDim.x) = state1[j] ^ state[j]; //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + s1 + j*threads*blockDim.x) = state2[j]; } } static __device__ __forceinline__ void reduceDuplexRowV50(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], const uint32_t thread, const uint32_t threads) { const uint32_t ps1 = (memshift * Ncol * rowIn*threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps2 = (memshift * Ncol * rowInOut *threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps3 = (memshift * Ncol * rowOut*threads + thread)*blockDim.x + threadIdx.x; #pragma unroll 1 for (int i = 0; i < 8; i++) { uint2 state1[3], state2[3]; const uint32_t s1 = ps1 + i*memshift*threads *blockDim.x; const uint32_t s2 = ps2 + i*memshift*threads *blockDim.x; const uint32_t s3 = ps3 + i*memshift*threads *blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) { state1[j] = *(DMatrix + s1 + j*threads*blockDim.x); state2[j] = *(DMatrix + s2 + j*threads*blockDim.x); } #pragma unroll for (int j = 0; j < 3; j++) { state1[j] += state2[j]; state[j] ^= state1[j]; } round_lyra(state); //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) { *(DMatrix + s2 + j*threads*blockDim.x) = state2[j]; *(DMatrix + s3 + j*threads*blockDim.x) ^= state[j]; } } } static __device__ __forceinline__ void reduceDuplexRowV50_8(const int rowInOut, uint2 state[4], const uint32_t thread, const uint32_t threads) { const uint32_t ps1 = (memshift * Ncol * 2*threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps2 = (memshift * Ncol * rowInOut *threads + thread)*blockDim.x + threadIdx.x; const uint32_t ps3 = (memshift * Ncol * 5*threads + thread)*blockDim.x + threadIdx.x; uint2 state1[3], last[3]; #pragma unroll for (int j = 0; j < 3; j++) { state1[j] = *(DMatrix + ps1 + j*threads*blockDim.x); last[j] = *(DMatrix + ps2 + j*threads*blockDim.x); } #pragma unroll for (int j = 0; j < 3; j++) { state1[j] += last[j]; state[j] ^= state1[j]; } round_lyra(state); //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { last[0] ^= Data2; last[1] ^= Data0; last[2] ^= Data1; } else { last[0] ^= Data0; last[1] ^= Data1; last[2] ^= Data2; } if (rowInOut == 5) { #pragma unroll for (int j = 0; j < 3; j++) last[j] ^= state[j]; } for (int i = 1; i < 8; i++) { const uint32_t s1 = ps1 + i*memshift*threads *blockDim.x; const uint32_t s2 = ps2 + i*memshift*threads *blockDim.x; #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= *(DMatrix + s1 + j*threads*blockDim.x) + *(DMatrix + s2 + j*threads*blockDim.x); round_lyra(state); } #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= last[j]; } __global__ __launch_bounds__(64, 1) void lyra2_gpu_hash_32_1_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); const uint2x4 blake2b_IV[2] = { { { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a } }, { { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } } }; if (thread < threads) { uint2x4 state[4]; ((uint2*)state)[0] = __ldg(&g_hash[thread]); ((uint2*)state)[1] = __ldg(&g_hash[thread + threads]); ((uint2*)state)[2] = __ldg(&g_hash[thread + threads * 2]); ((uint2*)state)[3] = __ldg(&g_hash[thread + threads * 3]); state[1] = state[0]; state[2] = blake2b_IV[0]; state[3] = blake2b_IV[1]; for (int i = 0; i < 24; i++) round_lyra(state); //because 12 is not enough ((uint2x4*)DMatrix)[0 * threads + thread] = state[0]; ((uint2x4*)DMatrix)[1 * threads + thread] = state[1]; ((uint2x4*)DMatrix)[2 * threads + thread] = state[2]; ((uint2x4*)DMatrix)[3 * threads + thread] = state[3]; } } __global__ __launch_bounds__(TPB50, 1) void lyra2_gpu_hash_32_2_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) { const uint32_t thread = (blockDim.y * blockIdx.x + threadIdx.y); if (thread < threads) { uint2 state[4]; state[0] = __ldg(&DMatrix[(0 * threads + thread)*blockDim.x + threadIdx.x]); state[1] = __ldg(&DMatrix[(1 * threads + thread)*blockDim.x + threadIdx.x]); state[2] = __ldg(&DMatrix[(2 * threads + thread)*blockDim.x + threadIdx.x]); state[3] = __ldg(&DMatrix[(3 * threads + thread)*blockDim.x + threadIdx.x]); reduceDuplexV5(state, thread, threads); uint32_t rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(7, rowa, 0, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(0, rowa, 3, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(3, rowa, 6, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(6, rowa, 1, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(1, rowa, 4, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(4, rowa, 7, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50(7, rowa, 2, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowV50_8(rowa, state, thread, threads); DMatrix[(0 * threads + thread)*blockDim.x + threadIdx.x] = state[0]; DMatrix[(1 * threads + thread)*blockDim.x + threadIdx.x] = state[1]; DMatrix[(2 * threads + thread)*blockDim.x + threadIdx.x] = state[2]; DMatrix[(3 * threads + thread)*blockDim.x + threadIdx.x] = state[3]; } } __global__ __launch_bounds__(64, 1) void lyra2_gpu_hash_32_3_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint2x4 state[4]; state[0] = __ldg4(&((uint2x4*)DMatrix)[0 * threads + thread]); state[1] = __ldg4(&((uint2x4*)DMatrix)[1 * threads + thread]); state[2] = __ldg4(&((uint2x4*)DMatrix)[2 * threads + thread]); state[3] = __ldg4(&((uint2x4*)DMatrix)[3 * threads + thread]); for (int i = 0; i < 12; i++) round_lyra(state); g_hash[thread] = ((uint2*)state)[0]; g_hash[thread + threads] = ((uint2*)state)[1]; g_hash[thread + threads * 2] = ((uint2*)state)[2]; g_hash[thread + threads * 3] = ((uint2*)state)[3]; } } #else /* if __CUDA_ARCH__ != 500 .. host */ __global__ void lyra2_gpu_hash_32_1_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} __global__ void lyra2_gpu_hash_32_2_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} __global__ void lyra2_gpu_hash_32_3_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} #endif