#include #include #include "cuda_lyra2_vectors.h" #define TPB 8 // #if __CUDA_ARCH__ < 500 #define vectype ulonglong4 #define u64type uint64_t #define memshift 4 #elif __CUDA_ARCH__ == 500 #define u64type uint2 #define vectype uint28 #define memshift 3 #else #define u64type uint2 #define vectype uint28 #define memshift 4 #endif __device__ vectype *DMatrix; #ifdef __CUDA_ARCH__ static __device__ __forceinline__ void Gfunc_v35(uint2 &a, uint2 &b, uint2 &c, uint2 &d) { a += b; d ^= a; d = SWAPUINT2(d); c += d; b ^= c; b = ROR24(b); a += b; d ^= a; d = ROR16(d); c += d; b ^= c; b = ROR2(b, 63); } #if __CUDA_ARCH__ < 500 static __device__ __forceinline__ void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d) { a += b; d ^= a; d = ROTR64(d, 32); c += d; b ^= c; b = ROTR64(b, 24); a += b; d ^= a; d = ROTR64(d, 16); c += d; b ^= c; b = ROTR64(b, 63); } #endif static __device__ __forceinline__ void round_lyra_v35(vectype* s) { Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x); Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y); Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z); Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w); Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w); Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x); Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y); Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z); } #else #define round_lyra_v35(s) {} #endif static __device__ __forceinline__ void reduceDuplex(vectype state[4], uint32_t thread) { vectype state1[3]; uint32_t ps1 = (256 * thread); uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread); #pragma unroll 4 for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 + i*memshift; uint32_t s2 = ps2 - i*memshift; for (int j = 0; j < 3; j++) state1[j] = __ldg4(&(DMatrix+s1)[j]); for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra_v35(state); for (int j = 0; j < 3; j++) state1[j] ^= state[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state1[j]; } } static __device__ __forceinline__ void reduceDuplexV3(vectype state[4], uint32_t thread) { vectype state1[3]; uint32_t ps1 = (256 * thread); // colomn row uint32_t ps2 = (memshift * 7 * 8 + memshift * 1 + 64 * memshift * thread); #pragma unroll 4 for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 + 8 * i *memshift; uint32_t s2 = ps2 - 8 * i *memshift; for (int j = 0; j < 3; j++) state1[j] = __ldg4(&(DMatrix + s1)[j]); for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra_v35(state); for (int j = 0; j < 3; j++) state1[j] ^= state[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state1[j]; } } static __device__ __forceinline__ void reduceDuplexRowSetupV2(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread) { vectype state2[3],state1[3]; uint32_t ps1 = ( memshift * 8 * rowIn + 256 * thread); uint32_t ps2 = ( memshift * 8 * rowInOut + 256 * thread); uint32_t ps3 = (memshift*7 + memshift * 8 * rowOut + 256 * thread); #pragma unroll 1 for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 + i*memshift; uint32_t s2 = ps2 + i*memshift; uint32_t s3 = ps3 - i*memshift; for (int j = 0; j < 3; j++) state1[j]= __ldg4(&(DMatrix + s1)[j]); for (int j = 0; j < 3; j++) state2[j]= __ldg4(&(DMatrix + s2)[j]); for (int j = 0; j < 3; j++) { vectype tmp = state1[j] + state2[j]; state[j] ^= tmp; } round_lyra_v35(state); for (int j = 0; j < 3; j++) { state1[j] ^= state[j]; (DMatrix + s3)[j] = state1[j]; } ((uint2*)state2)[0] ^= ((uint2*)state)[11]; for (int j = 0; j < 11; j++) ((uint2*)state2)[j+1] ^= ((uint2*)state)[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state2[j]; } } static __device__ __forceinline__ void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread) { vectype state2[3], state1[3]; uint32_t ps1 = ( memshift * rowIn + 64 * memshift * thread); uint32_t ps2 = (memshift * rowInOut + 64 * memshift* thread); uint32_t ps3 = (8 * memshift * 7 + memshift * rowOut + 64 * memshift * thread); /* uint32_t ps1 = (256 * thread); uint32_t ps2 = (256 * thread); uint32_t ps3 = (256 * thread); */ #pragma nounroll for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 + 8*i*memshift; uint32_t s2 = ps2 + 8*i*memshift; uint32_t s3 = ps3 - 8*i*memshift; for (int j = 0; j < 3; j++) state1[j] = __ldg4(&(DMatrix + s1 )[j]); for (int j = 0; j < 3; j++) state2[j] = __ldg4(&(DMatrix + s2 )[j]); for (int j = 0; j < 3; j++) { vectype tmp = state1[j] + state2[j]; state[j] ^= tmp; } round_lyra_v35(state); for (int j = 0; j < 3; j++) { state1[j] ^= state[j]; (DMatrix + s3)[j] = state1[j]; } ((uint2*)state2)[0] ^= ((uint2*)state)[11]; for (int j = 0; j < 11; j++) ((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state2[j]; } } static __device__ __forceinline__ void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread) { vectype state1[3], state2[3]; uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread); uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread); uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread); #pragma unroll 1 for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 + i*memshift; uint32_t s2 = ps2 + i*memshift; uint32_t s3 = ps3 + i*memshift; for (int j = 0; j < 3; j++) state1[j] = __ldg4(&(DMatrix + s1)[j]); for (int j = 0; j < 3; j++) state2[j] = __ldg4(&(DMatrix + s2)[j]); for (int j = 0; j < 3; j++) state1[j] += state2[j]; for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra_v35(state); ((uint2*)state2)[0] ^= ((uint2*)state)[11]; for (int j = 0; j < 11; j++) ((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; if (rowInOut != rowOut) { for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state2[j]; for (int j = 0; j < 3; j++) (DMatrix + s3)[j] ^= state[j]; } else { for (int j = 0; j < 3; j++) state2[j] ^= state[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j]=state2[j]; } } } static __device__ __forceinline__ void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread) { vectype state1[3], state2[3]; uint32_t ps1 = (memshift * rowIn + 64 * memshift * thread); uint32_t ps2 = (memshift * rowInOut + 64 * memshift * thread); uint32_t ps3 = (memshift * rowOut + 64 *memshift * thread); #pragma nounroll for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 + 8 * i*memshift; uint32_t s2 = ps2 + 8 * i*memshift; uint32_t s3 = ps3 + 8 * i*memshift; for (int j = 0; j < 3; j++) state1[j] = __ldg4(&(DMatrix + s1)[j]); for (int j = 0; j < 3; j++) state2[j] = __ldg4(&(DMatrix + s2)[j]); for (int j = 0; j < 3; j++) state1[j] += state2[j]; for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra_v35(state); ((uint2*)state2)[0] ^= ((uint2*)state)[11]; for (int j = 0; j < 11; j++) ((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; if (rowInOut != rowOut) { for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state2[j]; for (int j = 0; j < 3; j++) (DMatrix + s3)[j] ^= state[j]; } else { for (int j = 0; j < 3; j++) state2[j] ^= state[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state2[j]; } } } #if __CUDA_ARCH__ < 500 __global__ __launch_bounds__(48, 1) #elif __CUDA_ARCH__ == 500 __global__ __launch_bounds__(16, 1) #else __global__ __launch_bounds__(TPB, 1) #endif void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); vectype state[4]; #if __CUDA_ARCH__ > 350 const uint28 blake2b_IV[2] = { {{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }}, {{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }} }; #else const ulonglong4 blake2b_IV[2] = { { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 }, { 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 } }; #endif #if __CUDA_ARCH__ == 350 if (thread < threads) #endif { ((uint2*)state)[0] = __ldg(&outputHash[thread]); ((uint2*)state)[1] = __ldg(&outputHash[thread + threads]); ((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]); ((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]); // state[0] = __ldg4(&((vectype*)outputHash)[thread]); state[1] = state[0]; state[2] = ((vectype*)blake2b_IV)[0]; state[3] = ((vectype*)blake2b_IV)[1]; for (int i = 0; i<24; i++) { //because 12 is not enough round_lyra_v35(state); } uint32_t ps1 = (memshift * 7 + 256 * thread); for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 - memshift * i; for (int j = 0; j < 3; j++) (DMatrix + s1)[j] = (state)[j]; round_lyra_v35(state); } reduceDuplex(state, thread); reduceDuplexRowSetupV2(1, 0, 2, state, thread); reduceDuplexRowSetupV2(2, 1, 3, state, thread); reduceDuplexRowSetupV2(3, 0, 4, state, thread); reduceDuplexRowSetupV2(4, 3, 5, state, thread); reduceDuplexRowSetupV2(5, 2, 6, state, thread); reduceDuplexRowSetupV2(6, 1, 7, state, thread); uint32_t rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(7, rowa, 0, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(0, rowa, 3, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(3, rowa, 6, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(6, rowa, 1, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(1, rowa, 4, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(4, rowa, 7, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(7, rowa, 2, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV2(2, rowa, 5, state, thread); uint32_t shift = (memshift * 8 * rowa + 256 * thread); for (int j = 0; j < 3; j++) state[j] ^= __ldg4(&(DMatrix + shift)[j]); for (int i = 0; i < 12; i++) round_lyra_v35(state); outputHash[thread]= ((uint2*)state)[0]; outputHash[thread + threads] = ((uint2*)state)[1]; outputHash[thread + 2 * threads] = ((uint2*)state)[2]; outputHash[thread + 3 * threads] = ((uint2*)state)[3]; // ((vectype*)outputHash)[thread] = state[0]; } //thread } #if __CUDA_ARCH__ < 500 __global__ __launch_bounds__(48, 1) #elif __CUDA_ARCH__ == 500 __global__ __launch_bounds__(16, 1) #else __global__ __launch_bounds__(TPB, 1) #endif void lyra2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); vectype state[4]; #if __CUDA_ARCH__ > 350 const uint28 blake2b_IV[2] = { { { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a } }, { { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } } }; #else const ulonglong4 blake2b_IV[2] = { { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 }, { 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 } }; #endif #if __CUDA_ARCH__ == 350 if (thread < threads) #endif { ((uint2*)state)[0] = __ldg(&outputHash[thread]); ((uint2*)state)[1] = __ldg(&outputHash[thread + threads]); ((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]); ((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]); state[1] = state[0]; state[2] = ((vectype*)blake2b_IV)[0]; state[3] = ((vectype*)blake2b_IV)[1]; for (int i = 0; i<24; i++) round_lyra_v35(state); //because 12 is not enough uint32_t ps1 = (8 * memshift * 7 + 64 * memshift * thread); for (int i = 0; i < 8; i++) { uint32_t s1 = ps1 - 8 * memshift * i; for (int j = 0; j < 3; j++) (DMatrix + s1)[j] = (state)[j]; round_lyra_v35(state); } reduceDuplexV3(state, thread); reduceDuplexRowSetupV3(1, 0, 2, state, thread); reduceDuplexRowSetupV3(2, 1, 3, state, thread); reduceDuplexRowSetupV3(3, 0, 4, state, thread); reduceDuplexRowSetupV3(4, 3, 5, state, thread); reduceDuplexRowSetupV3(5, 2, 6, state, thread); reduceDuplexRowSetupV3(6, 1, 7, state, thread); uint32_t rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(7, rowa, 0, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(0, rowa, 3, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(3, rowa, 6, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(6, rowa, 1, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(1, rowa, 4, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(4, rowa, 7, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(7, rowa, 2, state, thread); rowa = ((uint2*)state)[0].x & 7; reduceDuplexRowtV3(2, rowa, 5, state, thread); uint32_t shift = (memshift * rowa + 64 * memshift * thread); for (int j = 0; j < 3; j++) state[j] ^= __ldg4(&(DMatrix + shift)[j]); for (int i = 0; i < 12; i++) round_lyra_v35(state); outputHash[thread] = ((uint2*)state)[0]; outputHash[thread + threads] = ((uint2*)state)[1]; outputHash[thread + 2 * threads] = ((uint2*)state)[2]; outputHash[thread + 3 * threads] = ((uint2*)state)[3]; } //thread } __host__ void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash) { cudaMemcpyToSymbol(DMatrix, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice); } void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) { uint32_t tpb; if (device_sm[device_map[thr_id]]<500) tpb = 48; else if (device_sm[device_map[thr_id]]==500) tpb = 16; else tpb = TPB; dim3 grid((threads + tpb - 1) / tpb); dim3 block(tpb); if (device_sm[device_map[thr_id]] == 500) lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash); else lyra2_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)d_outputHash); MyStreamSynchronize(NULL, order, thr_id); }