/* * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "cpuminer-config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef WIN32 #include #include #else #include #include #if HAVE_SYS_SYSCTL_H #include #if HAVE_SYS_PARAM_H #include #endif #include #endif #endif #include "compat.h" #include "miner.h" #ifdef WIN32 #include #pragma comment(lib, "winmm.lib") #include "compat/winansi.h" BOOL WINAPI ConsoleHandler(DWORD); #endif #define PROGRAM_NAME "ccminer" #define LP_SCANTIME 60 #define HEAVYCOIN_BLKHDR_SZ 84 #define MNR_BLKHDR_SZ 80 // from cuda.cpp int cuda_num_devices(); void cuda_devicenames(); void cuda_devicereset(); int cuda_finddevice(char *name); #ifdef USE_WRAPNVML #include "nvml.h" wrap_nvml_handle *hnvml = NULL; #endif #ifdef __linux /* Linux specific policy and affinity management */ #include static inline void drop_policy(void) { struct sched_param param; param.sched_priority = 0; #ifdef SCHED_IDLE if (unlikely(sched_setscheduler(0, SCHED_IDLE, ¶m) == -1)) #endif #ifdef SCHED_BATCH sched_setscheduler(0, SCHED_BATCH, ¶m); #endif } static inline void affine_to_cpu(int id, int cpu) { cpu_set_t set; CPU_ZERO(&set); CPU_SET(cpu, &set); sched_setaffinity(0, sizeof(&set), &set); } #elif defined(__FreeBSD__) /* FreeBSD specific policy and affinity management */ #include static inline void drop_policy(void) { } static inline void affine_to_cpu(int id, int cpu) { cpuset_t set; CPU_ZERO(&set); CPU_SET(cpu, &set); cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_TID, -1, sizeof(cpuset_t), &set); } #else static inline void drop_policy(void) { } static inline void affine_to_cpu(int id, int cpu) { } #endif enum workio_commands { WC_GET_WORK, WC_SUBMIT_WORK, }; struct workio_cmd { enum workio_commands cmd; struct thr_info *thr; union { struct work *work; } u; }; enum sha_algos { ALGO_ANIME, ALGO_BLAKE, ALGO_BLAKECOIN, ALGO_DEEP, ALGO_DOOM, ALGO_FRESH, ALGO_FUGUE256, /* Fugue256 */ ALGO_GROESTL, ALGO_HEAVY, /* Heavycoin hash */ ALGO_KECCAK, ALGO_JACKPOT, ALGO_LUFFA_DOOM, ALGO_MJOLLNIR, /* Hefty hash */ ALGO_MYR_GR, ALGO_NIST5, ALGO_PENTABLAKE, ALGO_QUARK, ALGO_QUBIT, ALGO_S3, ALGO_WHC, ALGO_X11, ALGO_X13, ALGO_X14, ALGO_X15, ALGO_X17, ALGO_DMD_GR, }; static const char *algo_names[] = { "anime", "blake", "blakecoin", "deep", "doom", /* is luffa */ "fresh", "fugue256", "groestl", "heavy", "keccak", "jackpot", "luffa", "mjollnir", "myr-gr", "nist5", "penta", "quark", "qubit", "s3", "whirl", "x11", "x13", "x14", "x15", "x17", "dmd-gr", }; bool opt_debug = false; bool opt_protocol = false; bool opt_benchmark = false; bool want_longpoll = true; bool have_longpoll = false; bool want_stratum = true; bool have_stratum = false; static bool submit_old = false; bool use_syslog = false; static char* opt_syslog_pfx = (char*) PACKAGE_NAME; bool use_colors = true; static bool opt_background = false; bool opt_quiet = false; static int opt_retries = -1; static int opt_fail_pause = 30; int opt_timeout = 270; static int opt_scantime = 5; static json_t *opt_config; static const bool opt_time = true; static enum sha_algos opt_algo = ALGO_X11; int opt_n_threads = 0; static double opt_difficulty = 1; // CH bool opt_trust_pool = false; uint16_t opt_vote = 9999; int num_cpus; int num_processors; int device_map[8] = {0,1,2,3,4,5,6,7}; // CB char *device_name[8]; // CB int device_sm[8]; char *rpc_user = NULL; static char *rpc_url; static char *rpc_userpass; static char *rpc_pass; static char *short_url = NULL; char *opt_cert; char *opt_proxy; long opt_proxy_type; struct thr_info *thr_info; static int work_thr_id; struct thr_api *thr_api; int longpoll_thr_id = -1; int stratum_thr_id = -1; int api_thr_id = -1; bool stratum_need_reset = false; struct work_restart *work_restart = NULL; struct stratum_ctx stratum = { 0 }; pthread_mutex_t applog_lock; static pthread_mutex_t stats_lock; uint32_t accepted_count = 0L; uint32_t rejected_count = 0L; static double *thr_hashrates; uint64_t global_hashrate = 0; double global_diff = 0.0; int opt_statsavg = 30; int opt_intensity = 0; uint32_t opt_work_size = 0; /* default */ uint32_t opt_work_adds = 0; char *opt_api_allow = (char*) "127.0.0.1"; /* 0.0.0.0 for all ips */ int opt_api_listen = 4068; /* 0 to disable */ #ifdef HAVE_GETOPT_LONG #include #else struct option { const char *name; int has_arg; int *flag; int val; }; #endif static char const usage[] = "\ Usage: " PROGRAM_NAME " [OPTIONS]\n\ Options:\n\ -a, --algo=ALGO specify the hash algorithm to use\n\ anime Animecoin\n\ blake Blake 256 (SFR/NEOS)\n\ blakecoin Fast Blake 256 (8 rounds)\n\ deep Deepcoin\n\ dmd-gr Diamond-Groestl\n\ fresh Freshcoin (shavite 80)\n\ fugue256 Fuguecoin\n\ groestl Groestlcoin\n\ heavy Heavycoin\n\ jackpot Jackpot\n\ keccak Keccak-256 (Maxcoin)\n\ luffa Doomcoin\n\ mjollnir Mjollnircoin\n\ myr-gr Myriad-Groestl\n\ nist5 NIST5 (TalkCoin)\n\ penta Pentablake hash (5x Blake 512)\n\ quark Quark\n\ qubit Qubit\n\ s3 S3 (1Coin)\n\ x11 X11 (DarkCoin)\n\ x13 X13 (MaruCoin)\n\ x14 X14\n\ x15 X15\n\ x17 X17 (peoplecurrency)\n\ whirl Whirlcoin (old whirlpool)\n\ -d, --devices Comma separated list of CUDA devices to use.\n\ Device IDs start counting from 0! Alternatively takes\n\ string names of your cards like gtx780ti or gt640#2\n\ (matching 2nd gt640 in the PC)\n\ -i --intensity=N GPU intensity 8-31 (default: auto) \n\ Decimals are allowed for fine tuning \n\ -f, --diff Divide difficulty by this factor (std is 1) \n\ -v, --vote=VOTE block reward vote (for HeavyCoin)\n\ -m, --trust-pool trust the max block reward vote (maxvote) sent by the pool\n\ -o, --url=URL URL of mining server\n\ -O, --userpass=U:P username:password pair for mining server\n\ -u, --user=USERNAME username for mining server\n\ -p, --pass=PASSWORD password for mining server\n\ --cert=FILE certificate for mining server using SSL\n\ -x, --proxy=[PROTOCOL://]HOST[:PORT] connect through a proxy\n\ -t, --threads=N number of miner threads (default: number of nVidia GPUs)\n\ -r, --retries=N number of times to retry if a network call fails\n\ (default: retry indefinitely)\n\ -R, --retry-pause=N time to pause between retries, in seconds (default: 30)\n\ -T, --timeout=N network timeout, in seconds (default: 270)\n\ -s, --scantime=N upper bound on time spent scanning current work when\n\ long polling is unavailable, in seconds (default: 5)\n\ -N, --statsavg number of samples used to display hashrate (default: 20)\n\ --no-longpoll disable X-Long-Polling support\n\ --no-stratum disable X-Stratum support\n\ -q, --quiet disable per-thread hashmeter output\n\ --no-color disable colored output\n\ -D, --debug enable debug output\n\ -P, --protocol-dump verbose dump of protocol-level activities\n\ -b, --api-bind IP/Port for the miner API (default: 127.0.0.1:4068)\n" #ifdef HAVE_SYSLOG_H "\ -S, --syslog use system log for output messages\n\ --syslog-prefix=... allow to change syslog tool name\n" #endif #ifndef WIN32 "\ -B, --background run the miner in the background\n" #endif "\ --benchmark run in offline benchmark mode\n\ --cputest debug hashes from cpu algorithms\n\ -c, --config=FILE load a JSON-format configuration file\n\ -V, --version display version information and exit\n\ -h, --help display this help text and exit\n\ "; static char const short_options[] = #ifndef WIN32 "B" #endif #ifdef HAVE_SYSLOG_H "S" #endif "a:c:i:Dhp:Px:qr:R:s:t:T:o:u:O:Vd:f:mv:N:b:"; static struct option const options[] = { { "algo", 1, NULL, 'a' }, { "api-bind", 1, NULL, 'b' }, #ifndef WIN32 { "background", 0, NULL, 'B' }, #endif { "benchmark", 0, NULL, 1005 }, { "cert", 1, NULL, 1001 }, { "config", 1, NULL, 'c' }, { "cputest", 0, NULL, 1006 }, { "debug", 0, NULL, 'D' }, { "help", 0, NULL, 'h' }, { "intensity", 1, NULL, 'i' }, { "no-color", 0, NULL, 1002 }, { "no-longpoll", 0, NULL, 1003 }, { "no-stratum", 0, NULL, 1007 }, { "pass", 1, NULL, 'p' }, { "protocol-dump", 0, NULL, 'P' }, { "proxy", 1, NULL, 'x' }, { "quiet", 0, NULL, 'q' }, { "retries", 1, NULL, 'r' }, { "retry-pause", 1, NULL, 'R' }, { "scantime", 1, NULL, 's' }, { "statsavg", 1, NULL, 'N' }, #ifdef HAVE_SYSLOG_H { "syslog", 0, NULL, 'S' }, { "syslog-prefix", 1, NULL, 1008 }, #endif { "threads", 1, NULL, 't' }, { "vote", 1, NULL, 'v' }, { "trust-pool", 0, NULL, 'm' }, { "timeout", 1, NULL, 'T' }, { "url", 1, NULL, 'o' }, { "user", 1, NULL, 'u' }, { "userpass", 1, NULL, 'O' }, { "version", 0, NULL, 'V' }, { "devices", 1, NULL, 'd' }, { "diff", 1, NULL, 'f' }, { 0, 0, 0, 0 } }; static struct work _ALIGN(64) g_work; static time_t g_work_time; static pthread_mutex_t g_work_lock; void get_currentalgo(char* buf, int sz) { snprintf(buf, sz, "%s", algo_names[opt_algo]); } /** * Exit app */ void proper_exit(int reason) { cuda_devicereset(); hashlog_purge_all(); stats_purge_all(); #ifdef WIN32 timeEndPeriod(1); // else never executed #endif #ifdef USE_WRAPNVML if (hnvml) wrap_nvml_destroy(hnvml); #endif exit(reason); } static bool jobj_binary(const json_t *obj, const char *key, void *buf, size_t buflen) { const char *hexstr; json_t *tmp; tmp = json_object_get(obj, key); if (unlikely(!tmp)) { applog(LOG_ERR, "JSON key '%s' not found", key); return false; } hexstr = json_string_value(tmp); if (unlikely(!hexstr)) { applog(LOG_ERR, "JSON key '%s' is not a string", key); return false; } if (!hex2bin((uchar*)buf, hexstr, buflen)) return false; return true; } static bool work_decode(const json_t *val, struct work *work) { int i; if (unlikely(!jobj_binary(val, "data", work->data, sizeof(work->data)))) { applog(LOG_ERR, "JSON inval data"); return false; } if (unlikely(!jobj_binary(val, "target", work->target, sizeof(work->target)))) { applog(LOG_ERR, "JSON inval target"); return false; } if (opt_algo == ALGO_HEAVY) { if (unlikely(!jobj_binary(val, "maxvote", &work->maxvote, sizeof(work->maxvote)))) { work->maxvote = 2048; } } else work->maxvote = 0; for (i = 0; i < ARRAY_SIZE(work->data); i++) work->data[i] = le32dec(work->data + i); for (i = 0; i < ARRAY_SIZE(work->target); i++) work->target[i] = le32dec(work->target + i); json_t *jr = json_object_get(val, "noncerange"); if (jr) { const char * hexstr = json_string_value(jr); if (likely(hexstr)) { // never seen yet... hex2bin((uchar*)work->noncerange.u64, hexstr, 8); applog(LOG_DEBUG, "received noncerange: %08x-%08x", work->noncerange.u32[0], work->noncerange.u32[1]); } } /* use work ntime as job id (solo-mining) */ cbin2hex(work->job_id, (const char*)&work->data[17], 4); return true; } /** * Calculate the work difficulty as double */ static void calc_diff(struct work *work, int known) { // sample for diff 32.53 : 00000007de5f0000 const uint64_t diffone = 0xFFFF000000000000ull; uint64_t *data64, d64; char rtarget[32]; swab256(rtarget, work->target); data64 = (uint64_t *)(rtarget + 3); /* todo: index (3) can be tuned here */ if (opt_algo == ALGO_HEAVY) { data64 = (uint64_t *)(rtarget + 2); } d64 = swab64(*data64); if (unlikely(!d64)) d64 = 1; work->difficulty = (double)diffone / d64; if (opt_difficulty > 0.) { work->difficulty /= opt_difficulty; } } static int share_result(int result, const char *reason) { char s[345]; double hashrate = 0.; pthread_mutex_lock(&stats_lock); for (int i = 0; i < opt_n_threads; i++) { hashrate += stats_get_speed(i, thr_hashrates[i]); } result ? accepted_count++ : rejected_count++; pthread_mutex_unlock(&stats_lock); global_hashrate = llround(hashrate); sprintf(s, hashrate >= 1e6 ? "%.0f" : "%.2f", 1e-3 * hashrate); applog(LOG_NOTICE, "accepted: %lu/%lu (%.2f%%), %s khash/s %s", accepted_count, accepted_count + rejected_count, 100. * accepted_count / (accepted_count + rejected_count), s, use_colors ? (result ? CL_GRN "yay!!!" : CL_RED "booooo") : (result ? "(yay!!!)" : "(booooo)")); if (reason) { applog(LOG_WARNING, "reject reason: %s", reason); if (strncmp(reason, "low difficulty share", 20) == 0) { opt_difficulty = (opt_difficulty * 2.0) / 3.0; applog(LOG_WARNING, "factor reduced to : %0.2f", opt_difficulty); return 0; } } return 1; } static bool submit_upstream_work(CURL *curl, struct work *work) { json_t *val, *res, *reason; char s[345]; int i; bool stale_work; bool rc = false; pthread_mutex_lock(&g_work_lock); if (strlen(work->job_id + 8)) { /* stale if not the current job id */ stale_work = strcmp(work->job_id + 8, g_work.job_id + 8); } else { applog_hash((uchar*)&work->data); /* fallback if not job id (compare hash) */ stale_work = memcmp(&work->data[1], &g_work.data[1], 32); } if (stale_work) { pthread_mutex_unlock(&g_work_lock); if (opt_debug) applog(LOG_WARNING, "stale work detected, discarding"); return true; } calc_diff(work, 0); pthread_mutex_unlock(&g_work_lock); if (have_stratum) { uint32_t sent; uint32_t ntime, nonce; uint16_t nvote; char *ntimestr, *noncestr, *xnonce2str, *nvotestr; le32enc(&ntime, work->data[17]); le32enc(&nonce, work->data[19]); be16enc(&nvote, *((uint16_t*)&work->data[20])); noncestr = bin2hex((const uchar*)(&nonce), 4); sent = hashlog_already_submittted(work->job_id, nonce); if (sent > 0) { sent = (uint32_t) time(NULL) - sent; if (!opt_quiet) { applog(LOG_WARNING, "nonce %s was already sent %u seconds ago", noncestr, sent); hashlog_dump_job(work->job_id); } free(noncestr); // prevent useless computing on some pools stratum_need_reset = true; for (int i = 0; i < opt_n_threads; i++) work_restart[i].restart = 1; return true; } ntimestr = bin2hex((const uchar*)(&ntime), 4); xnonce2str = bin2hex(work->xnonce2, work->xnonce2_len); if (opt_algo == ALGO_HEAVY) { nvotestr = bin2hex((const uchar*)(&nvote), 2); sprintf(s, "{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}", rpc_user, work->job_id + 8, xnonce2str, ntimestr, noncestr, nvotestr); free(nvotestr); } else { sprintf(s, "{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}", rpc_user, work->job_id + 8, xnonce2str, ntimestr, noncestr); } free(xnonce2str); free(ntimestr); free(noncestr); gettimeofday(&stratum.tv_submit, NULL); if (unlikely(!stratum_send_line(&stratum, s))) { applog(LOG_ERR, "submit_upstream_work stratum_send_line failed"); return false; } hashlog_remember_submit(work, nonce); } else { /* build hex string */ char *str = NULL; if (opt_algo != ALGO_HEAVY && opt_algo != ALGO_MJOLLNIR) { for (i = 0; i < ARRAY_SIZE(work->data); i++) le32enc(work->data + i, work->data[i]); } str = bin2hex((uchar*)work->data, sizeof(work->data)); if (unlikely(!str)) { applog(LOG_ERR, "submit_upstream_work OOM"); return false; } /* build JSON-RPC request */ sprintf(s, "{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}\r\n", str); /* issue JSON-RPC request */ val = json_rpc_call(curl, rpc_url, rpc_userpass, s, false, false, NULL); if (unlikely(!val)) { applog(LOG_ERR, "submit_upstream_work json_rpc_call failed"); return false; } res = json_object_get(val, "result"); reason = json_object_get(val, "reject-reason"); if (!share_result(json_is_true(res), reason ? json_string_value(reason) : NULL)) hashlog_purge_job(work->job_id); json_decref(val); free(str); } return true; } static const char *rpc_req = "{\"method\": \"getwork\", \"params\": [], \"id\":0}\r\n"; static bool get_upstream_work(CURL *curl, struct work *work) { json_t *val; bool rc; struct timeval tv_start, tv_end, diff; gettimeofday(&tv_start, NULL); val = json_rpc_call(curl, rpc_url, rpc_userpass, rpc_req, want_longpoll, false, NULL); gettimeofday(&tv_end, NULL); if (have_stratum) { if (val) json_decref(val); return true; } if (!val) return false; rc = work_decode(json_object_get(val, "result"), work); if (opt_protocol && rc) { timeval_subtract(&diff, &tv_end, &tv_start); /* show time because curl can be slower against versions/config */ applog(LOG_DEBUG, "got new work in %.2f ms", (1000.0 * diff.tv_sec) + (0.001 * diff.tv_usec)); } json_decref(val); return rc; } static void workio_cmd_free(struct workio_cmd *wc) { if (!wc) return; switch (wc->cmd) { case WC_SUBMIT_WORK: aligned_free(wc->u.work); break; default: /* do nothing */ break; } memset(wc, 0, sizeof(*wc)); /* poison */ free(wc); } static bool workio_get_work(struct workio_cmd *wc, CURL *curl) { struct work *ret_work; int failures = 0; ret_work = (struct work*)aligned_calloc(sizeof(*ret_work)); if (!ret_work) return false; /* obtain new work from bitcoin via JSON-RPC */ while (!get_upstream_work(curl, ret_work)) { if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "json_rpc_call failed, terminating workio thread"); aligned_free(ret_work); return false; } /* pause, then restart work-request loop */ applog(LOG_ERR, "json_rpc_call failed, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } /* send work to requesting thread */ if (!tq_push(wc->thr->q, ret_work)) aligned_free(ret_work); return true; } static bool workio_submit_work(struct workio_cmd *wc, CURL *curl) { int failures = 0; /* submit solution to bitcoin via JSON-RPC */ while (!submit_upstream_work(curl, wc->u.work)) { if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "...terminating workio thread"); return false; } /* pause, then restart work-request loop */ if (!opt_benchmark) applog(LOG_ERR, "...retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } return true; } static void *workio_thread(void *userdata) { struct thr_info *mythr = (struct thr_info*)userdata; CURL *curl; bool ok = true; curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialization failed"); return NULL; } while (ok) { struct workio_cmd *wc; /* wait for workio_cmd sent to us, on our queue */ wc = (struct workio_cmd *)tq_pop(mythr->q, NULL); if (!wc) { ok = false; break; } /* process workio_cmd */ switch (wc->cmd) { case WC_GET_WORK: ok = workio_get_work(wc, curl); break; case WC_SUBMIT_WORK: ok = workio_submit_work(wc, curl); break; default: /* should never happen */ ok = false; break; } workio_cmd_free(wc); } tq_freeze(mythr->q); curl_easy_cleanup(curl); return NULL; } static bool get_work(struct thr_info *thr, struct work *work) { struct workio_cmd *wc; struct work *work_heap; if (opt_benchmark) { memset(work->data, 0x55, 76); //work->data[17] = swab32((uint32_t)time(NULL)); memset(work->data + 19, 0x00, 52); work->data[20] = 0x80000000; work->data[31] = 0x00000280; memset(work->target, 0x00, sizeof(work->target)); return true; } /* fill out work request message */ wc = (struct workio_cmd *)calloc(1, sizeof(*wc)); if (!wc) return false; wc->cmd = WC_GET_WORK; wc->thr = thr; /* send work request to workio thread */ if (!tq_push(thr_info[work_thr_id].q, wc)) { workio_cmd_free(wc); return false; } /* wait for response, a unit of work */ work_heap = (struct work *)tq_pop(thr->q, NULL); if (!work_heap) return false; /* copy returned work into storage provided by caller */ memcpy(work, work_heap, sizeof(*work)); aligned_free(work_heap); return true; } static bool submit_work(struct thr_info *thr, const struct work *work_in) { struct workio_cmd *wc; /* fill out work request message */ wc = (struct workio_cmd *)calloc(1, sizeof(*wc)); if (!wc) return false; wc->u.work = (struct work *)aligned_calloc(sizeof(*work_in)); if (!wc->u.work) goto err_out; wc->cmd = WC_SUBMIT_WORK; wc->thr = thr; memcpy(wc->u.work, work_in, sizeof(*work_in)); /* send solution to workio thread */ if (!tq_push(thr_info[work_thr_id].q, wc)) goto err_out; return true; err_out: workio_cmd_free(wc); return false; } static void stratum_gen_work(struct stratum_ctx *sctx, struct work *work) { uchar merkle_root[64]; int i; if (!sctx->job.job_id) { // applog(LOG_WARNING, "stratum_gen_work: job not yet retrieved"); return; } pthread_mutex_lock(&sctx->work_lock); // store the job ntime as high part of jobid snprintf(work->job_id, sizeof(work->job_id), "%07x %s", be32dec(sctx->job.ntime) & 0xfffffff, sctx->job.job_id); work->xnonce2_len = sctx->xnonce2_size; memcpy(work->xnonce2, sctx->job.xnonce2, sctx->xnonce2_size); // also store the bloc number work->height = sctx->job.height; /* Generate merkle root */ switch (opt_algo) { case ALGO_HEAVY: case ALGO_MJOLLNIR: heavycoin_hash(merkle_root, sctx->job.coinbase, (int)sctx->job.coinbase_size); break; case ALGO_FUGUE256: case ALGO_GROESTL: case ALGO_KECCAK: case ALGO_BLAKECOIN: case ALGO_WHC: SHA256((uchar*)sctx->job.coinbase, sctx->job.coinbase_size, (uchar*)merkle_root); break; default: sha256d(merkle_root, sctx->job.coinbase, (int)sctx->job.coinbase_size); } for (i = 0; i < sctx->job.merkle_count; i++) { memcpy(merkle_root + 32, sctx->job.merkle[i], 32); if (opt_algo == ALGO_HEAVY || opt_algo == ALGO_MJOLLNIR) heavycoin_hash(merkle_root, merkle_root, 64); else sha256d(merkle_root, merkle_root, 64); } /* Increment extranonce2 */ for (i = 0; i < (int)sctx->xnonce2_size && !++sctx->job.xnonce2[i]; i++); /* Assemble block header */ memset(work->data, 0, sizeof(work->data)); work->data[0] = le32dec(sctx->job.version); for (i = 0; i < 8; i++) work->data[1 + i] = le32dec((uint32_t *)sctx->job.prevhash + i); for (i = 0; i < 8; i++) work->data[9 + i] = be32dec((uint32_t *)merkle_root + i); work->data[17] = le32dec(sctx->job.ntime); work->data[18] = le32dec(sctx->job.nbits); if (opt_algo == ALGO_MJOLLNIR || opt_algo == ALGO_HEAVY) { for (i = 0; i < 20; i++) work->data[i] = be32dec((uint32_t *)&work->data[i]); } work->data[20] = 0x80000000; work->data[31] = (opt_algo == ALGO_MJOLLNIR) ? 0x000002A0 : 0x00000280; // HeavyCoin (vote / reward) if (opt_algo == ALGO_HEAVY) { work->maxvote = 2048; uint16_t *ext = (uint16_t*)(&work->data[20]); ext[0] = opt_vote; ext[1] = be16dec(sctx->job.nreward); // applog(LOG_DEBUG, "DEBUG: vote=%hx reward=%hx", ext[0], ext[1]); } pthread_mutex_unlock(&sctx->work_lock); if (opt_debug) { char *tm = atime2str(swab32(work->data[17]) - sctx->srvtime_diff); char *xnonce2str = bin2hex(work->xnonce2, sctx->xnonce2_size); applog(LOG_DEBUG, "DEBUG: job_id=%s xnonce2=%s time=%s", work->job_id, xnonce2str, tm); free(tm); free(xnonce2str); } if (opt_algo == ALGO_JACKPOT) diff_to_target(work->target, sctx->job.diff / (65536.0 * opt_difficulty)); else if (opt_algo == ALGO_FUGUE256 || opt_algo == ALGO_GROESTL || opt_algo == ALGO_DMD_GR || opt_algo == ALGO_FRESH) diff_to_target(work->target, sctx->job.diff / (256.0 * opt_difficulty)); else if (opt_algo == ALGO_KECCAK) diff_to_target(work->target, sctx->job.diff / (128.0 * opt_difficulty)); else diff_to_target(work->target, sctx->job.diff / opt_difficulty); } static void *miner_thread(void *userdata) { struct thr_info *mythr = (struct thr_info *)userdata; int thr_id = mythr->id; struct work work; uint64_t loopcnt = 0; uint32_t max_nonce; uint32_t end_nonce = 0xffffffffU / opt_n_threads * (thr_id + 1) - (thr_id + 1); bool work_done = false; bool extrajob = false; char s[16]; int rc = 0; memset(&work, 0, sizeof(work)); // prevent work from being used uninitialized /* Set worker threads to nice 19 and then preferentially to SCHED_IDLE * and if that fails, then SCHED_BATCH. No need for this to be an * error if it fails */ if (!opt_benchmark) { setpriority(PRIO_PROCESS, 0, 19); drop_policy(); } /* Cpu thread affinity */ if (num_cpus > 1 && opt_n_threads > 1) { if (!opt_quiet) applog(LOG_DEBUG, "Binding thread %d to cpu %d", thr_id, thr_id % num_cpus); affine_to_cpu(thr_id, thr_id % num_cpus); } while (1) { struct timeval tv_start, tv_end, diff; unsigned long hashes_done; uint32_t start_nonce; uint32_t scan_time = have_longpoll ? LP_SCANTIME : opt_scantime; uint64_t max64, minmax = 0x100000; // &work.data[19] int wcmplen = 76; uint32_t *nonceptr = (uint32_t*) (((char*)work.data) + wcmplen); if (have_stratum) { uint32_t sleeptime = 0; while (!work_done && time(NULL) >= (g_work_time + opt_scantime)) { usleep(100*1000); if (sleeptime > 4) { extrajob = true; break; } sleeptime++; } if (sleeptime && opt_debug && !opt_quiet) applog(LOG_DEBUG, "sleeptime: %u ms", sleeptime*100); nonceptr = (uint32_t*) (((char*)work.data) + wcmplen); pthread_mutex_lock(&g_work_lock); extrajob |= work_done; if ((*nonceptr) >= end_nonce || extrajob) { work_done = false; extrajob = false; stratum_gen_work(&stratum, &g_work); } } else { int min_scantime = scan_time; /* obtain new work from internal workio thread */ pthread_mutex_lock(&g_work_lock); if (time(NULL) - g_work_time >= min_scantime || (*nonceptr) >= end_nonce) { if (unlikely(!get_work(mythr, &g_work))) { applog(LOG_ERR, "work retrieval failed, exiting " "mining thread %d", mythr->id); pthread_mutex_unlock(&g_work_lock); goto out; } g_work_time = time(NULL); } } #if 0 if (!opt_benchmark && g_work.job_id[0] == '\0') { applog(LOG_ERR, "work data not read yet"); extrajob = true; work_done = true; sleep(1); //continue; } #endif if (rc > 1) { /* if we found more than one on last loop */ /* todo: handle an array to get them directly */ pthread_mutex_unlock(&g_work_lock); goto continue_scan; } if (!opt_benchmark && memcmp(work.target, g_work.target, sizeof(work.target))) { calc_diff(&g_work, 0); if (opt_debug) { uint64_t target64 = g_work.target[7] * 0x100000000ULL + g_work.target[6]; applog(LOG_DEBUG, "job %s target change: %llx (%.1f)", g_work.job_id, target64, g_work.difficulty); } memcpy(work.target, g_work.target, sizeof(work.target)); work.difficulty = g_work.difficulty; (*nonceptr) = (0xffffffffUL / opt_n_threads) * thr_id; // 0 if single thr /* on new target, ignoring nonce, clear sent data (hashlog) */ if (memcmp(work.target, g_work.target, sizeof(work.target))) { hashlog_purge_job(work.job_id); } } if (memcmp(work.data, g_work.data, wcmplen)) { #if 0 if (opt_debug) { for (int n=0; n <= (wcmplen-8); n+=8) { if (memcmp(work.data + n, g_work.data + n, 8)) { applog(LOG_DEBUG, "job %s work updated at offset %d:", g_work.job_id, n); applog_hash((uchar*) &work.data[n]); applog_compare_hash((uchar*) &g_work.data[n], (uchar*) &work.data[n]); } } } #endif memcpy(&work, &g_work, sizeof(struct work)); (*nonceptr) = (0xffffffffUL / opt_n_threads) * thr_id; // 0 if single thr } else (*nonceptr)++; //?? work_restart[thr_id].restart = 0; pthread_mutex_unlock(&g_work_lock); /* adjust max_nonce to meet target scan time */ if (have_stratum) max64 = LP_SCANTIME; else max64 = max(1, scan_time + g_work_time - time(NULL)); max64 *= (uint32_t)thr_hashrates[thr_id]; /* on start, max64 should not be 0, * before hashrate is computed */ if (max64 < minmax) { switch (opt_algo) { case ALGO_BLAKECOIN: case ALGO_BLAKE: minmax = 0x80000000U; break; case ALGO_DOOM: case ALGO_JACKPOT: case ALGO_KECCAK: case ALGO_LUFFA_DOOM: minmax = 0x2000000; break; case ALGO_S3: case ALGO_X11: case ALGO_X13: minmax = 0x400000; break; } max64 = max(minmax-1, max64); } // we can't scan more than uint capacity max64 = min(UINT32_MAX, max64); //if (opt_debug) // applog(LOG_DEBUG, "GPU #%d: start=%08x end=%08x max64=%llx", // device_map[thr_id], *nonceptr, end_nonce, max64); start_nonce = *nonceptr; /* do not recompute something already scanned */ if (opt_algo == ALGO_BLAKE && opt_n_threads == 1) { union { uint64_t data; uint32_t scanned[2]; } range; range.data = hashlog_get_scan_range(work.job_id); if (range.data && !opt_benchmark) { bool stall = false; if (range.scanned[0] == 1 && range.scanned[1] == UINT32_MAX) { applog(LOG_WARNING, "detected a rescan of fully scanned job!"); } else if (range.scanned[0] > 0 && range.scanned[1] > 0 && range.scanned[1] < 0xFFFFFFF0UL) { /* continue scan the end */ start_nonce = range.scanned[1] + 1; //applog(LOG_DEBUG, "scan the next part %x + 1 (%x-%x)", range.scanned[1], range.scanned[0], range.scanned[1]); } stall = (start_nonce == work.scanned_from && end_nonce == work.scanned_to); stall |= (start_nonce == work.scanned_from && start_nonce == range.scanned[1] + 1); stall |= (start_nonce > range.scanned[0] && start_nonce < range.scanned[1]); if (stall) { if (opt_debug && !opt_quiet) applog(LOG_DEBUG, "job done, wait for a new one..."); work_restart[thr_id].restart = 1; hashlog_purge_old(); stats_purge_old(); // wait a bit for a new job... usleep(500*1000); (*nonceptr) = end_nonce + 1; work_done = true; continue; } } } /* never let small ranges at end */ if (end_nonce >= UINT32_MAX - 256) end_nonce = UINT32_MAX; if ((max64 + start_nonce) >= end_nonce) max_nonce = end_nonce; else max_nonce = (uint32_t) (max64 + start_nonce); // todo: keep it rounded for gpu threads ? work.scanned_from = start_nonce; (*nonceptr) = start_nonce; if (opt_debug) applog(LOG_DEBUG, "GPU #%d: start=%08x end=%08x range=%08x", device_map[thr_id], start_nonce, max_nonce, (max_nonce-start_nonce)); hashes_done = 0; continue_scan: gettimeofday(&tv_start, NULL); /* scan nonces for a proof-of-work hash */ switch (opt_algo) { case ALGO_HEAVY: rc = scanhash_heavy(thr_id, work.data, work.target, max_nonce, &hashes_done, work.maxvote, HEAVYCOIN_BLKHDR_SZ); break; case ALGO_KECCAK: rc = scanhash_keccak256(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_MJOLLNIR: rc = scanhash_heavy(thr_id, work.data, work.target, max_nonce, &hashes_done, 0, MNR_BLKHDR_SZ); break; case ALGO_DEEP: rc = scanhash_deep(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_DOOM: case ALGO_LUFFA_DOOM: rc = scanhash_doom(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_FUGUE256: rc = scanhash_fugue256(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_GROESTL: case ALGO_DMD_GR: rc = scanhash_groestlcoin(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_MYR_GR: rc = scanhash_myriad(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_JACKPOT: rc = scanhash_jackpot(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_QUARK: rc = scanhash_quark(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_QUBIT: rc = scanhash_qubit(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_ANIME: rc = scanhash_anime(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_BLAKECOIN: rc = scanhash_blake256(thr_id, work.data, work.target, max_nonce, &hashes_done, 8); break; case ALGO_BLAKE: rc = scanhash_blake256(thr_id, work.data, work.target, max_nonce, &hashes_done, 14); break; case ALGO_FRESH: rc = scanhash_fresh(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_NIST5: rc = scanhash_nist5(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_PENTABLAKE: rc = scanhash_pentablake(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_S3: rc = scanhash_s3(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_WHC: rc = scanhash_whc(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_X11: rc = scanhash_x11(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_X13: rc = scanhash_x13(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_X14: rc = scanhash_x14(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_X15: rc = scanhash_x15(thr_id, work.data, work.target, max_nonce, &hashes_done); break; case ALGO_X17: rc = scanhash_x17(thr_id, work.data, work.target, max_nonce, &hashes_done); break; default: /* should never happen */ goto out; } /* record scanhash elapsed time */ gettimeofday(&tv_end, NULL); if (rc && opt_debug) applog(LOG_NOTICE, CL_CYN "found => %08x" CL_GRN " %08x", *nonceptr, swab32(*nonceptr)); timeval_subtract(&diff, &tv_end, &tv_start); if (diff.tv_usec || diff.tv_sec) { /* hashrate factors for some algos */ double rate_factor = 1.0; switch (opt_algo) { case ALGO_JACKPOT: case ALGO_QUARK: // to stay comparable to other ccminer forks or pools rate_factor = 0.5; break; } /* store thread hashrate */ pthread_mutex_lock(&stats_lock); if (diff.tv_sec + 1e-6 * diff.tv_usec > 0.0) { thr_hashrates[thr_id] = hashes_done / (diff.tv_sec + 1e-6 * diff.tv_usec); if (rc > 1) thr_hashrates[thr_id] = (rc * hashes_done) / (diff.tv_sec + 1e-6 * diff.tv_usec); thr_hashrates[thr_id] *= rate_factor; stats_remember_speed(thr_id, hashes_done, thr_hashrates[thr_id], (uint8_t) rc, work.height); } pthread_mutex_unlock(&stats_lock); } if (rc) work.scanned_to = *nonceptr; else { work.scanned_to = max_nonce; if (opt_debug && opt_benchmark) { // to debug nonce ranges applog(LOG_DEBUG, "GPU #%d: ends=%08x range=%llx", device_map[thr_id], *nonceptr, ((*nonceptr) - start_nonce)); } } hashlog_remember_scan_range(&work); /* output */ if (!opt_quiet && loopcnt) { sprintf(s, thr_hashrates[thr_id] >= 1e6 ? "%.0f" : "%.2f", 1e-3 * thr_hashrates[thr_id]); applog(LOG_INFO, "GPU #%d: %s, %s kH/s", device_map[thr_id], device_name[device_map[thr_id]], s); } /* loopcnt: ignore first loop hashrate */ if (loopcnt && thr_id == (opt_n_threads - 1)) { double hashrate = 0.; for (int i = 0; i < opt_n_threads && thr_hashrates[i]; i++) hashrate += stats_get_speed(i, thr_hashrates[i]); if (opt_benchmark) { sprintf(s, hashrate >= 1e6 ? "%.0f" : "%.2f", hashrate / 1000.); applog(LOG_NOTICE, "Total: %s kH/s", s); } // X-Mining-Hashrate global_hashrate = llround(hashrate); } /* if nonce found, submit work */ if (rc && !opt_benchmark) { if (!submit_work(mythr, &work)) break; } loopcnt++; } out: tq_freeze(mythr->q); return NULL; } static void restart_threads(void) { int i; for (i = 0; i < opt_n_threads; i++) work_restart[i].restart = 1; } static void *longpoll_thread(void *userdata) { struct thr_info *mythr = (struct thr_info *)userdata; CURL *curl = NULL; char *copy_start, *hdr_path = NULL, *lp_url = NULL; bool need_slash = false; curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialization failed"); goto out; } start: hdr_path = (char*)tq_pop(mythr->q, NULL); if (!hdr_path) goto out; /* full URL */ if (strstr(hdr_path, "://")) { lp_url = hdr_path; hdr_path = NULL; } /* absolute path, on current server */ else { copy_start = (*hdr_path == '/') ? (hdr_path + 1) : hdr_path; if (rpc_url[strlen(rpc_url) - 1] != '/') need_slash = true; lp_url = (char*)malloc(strlen(rpc_url) + strlen(copy_start) + 2); if (!lp_url) goto out; sprintf(lp_url, "%s%s%s", rpc_url, need_slash ? "/" : "", copy_start); } applog(LOG_INFO, "Long-polling activated for %s", lp_url); while (1) { json_t *val, *soval; int err; val = json_rpc_call(curl, lp_url, rpc_userpass, rpc_req, false, true, &err); if (have_stratum) { if (val) json_decref(val); goto out; } if (likely(val)) { if (!opt_quiet) applog(LOG_INFO, "LONGPOLL detected new block"); soval = json_object_get(json_object_get(val, "result"), "submitold"); submit_old = soval ? json_is_true(soval) : false; pthread_mutex_lock(&g_work_lock); if (work_decode(json_object_get(val, "result"), &g_work)) { if (opt_debug) applog(LOG_BLUE, "LONGPOLL pushed new work"); g_work_time = time(NULL); restart_threads(); } pthread_mutex_unlock(&g_work_lock); json_decref(val); } else { pthread_mutex_lock(&g_work_lock); g_work_time -= LP_SCANTIME; pthread_mutex_unlock(&g_work_lock); restart_threads(); if (err != CURLE_OPERATION_TIMEDOUT) { have_longpoll = false; free(hdr_path); free(lp_url); lp_url = NULL; sleep(opt_fail_pause); goto start; } } } out: free(hdr_path); free(lp_url); tq_freeze(mythr->q); if (curl) curl_easy_cleanup(curl); return NULL; } static bool stratum_handle_response(char *buf) { json_t *val, *err_val, *res_val, *id_val; json_error_t err; struct timeval tv_answer, diff; bool ret = false; val = JSON_LOADS(buf, &err); if (!val) { applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text); goto out; } res_val = json_object_get(val, "result"); err_val = json_object_get(val, "error"); id_val = json_object_get(val, "id"); if (!id_val || json_is_null(id_val) || !res_val) goto out; // ignore subscribe late answer (yaamp) if (json_integer_value(id_val) < 4) goto out; gettimeofday(&tv_answer, NULL); timeval_subtract(&diff, &tv_answer, &stratum.tv_submit); // store time required to the pool to answer to a submit stratum.answer_msec = (1000 * diff.tv_sec) + (uint32_t) (0.001 * diff.tv_usec); share_result(json_is_true(res_val), err_val ? json_string_value(json_array_get(err_val, 1)) : NULL); ret = true; out: if (val) json_decref(val); return ret; } static void *stratum_thread(void *userdata) { struct thr_info *mythr = (struct thr_info *)userdata; char *s; stratum.url = (char*)tq_pop(mythr->q, NULL); if (!stratum.url) goto out; applog(LOG_BLUE, "Starting Stratum on %s", stratum.url); while (1) { int failures = 0; if (stratum_need_reset) { stratum_need_reset = false; stratum_disconnect(&stratum); applog(LOG_DEBUG, "stratum connection reset"); } while (!stratum.curl) { pthread_mutex_lock(&g_work_lock); g_work_time = 0; pthread_mutex_unlock(&g_work_lock); restart_threads(); if (!stratum_connect(&stratum, stratum.url) || !stratum_subscribe(&stratum) || !stratum_authorize(&stratum, rpc_user, rpc_pass)) { stratum_disconnect(&stratum); if (opt_retries >= 0 && ++failures > opt_retries) { applog(LOG_ERR, "...terminating workio thread"); tq_push(thr_info[work_thr_id].q, NULL); goto out; } if (!opt_benchmark) applog(LOG_ERR, "...retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } } if (stratum.job.job_id && (!g_work_time || strncmp(stratum.job.job_id, g_work.job_id + 8, 120))) { pthread_mutex_lock(&g_work_lock); stratum_gen_work(&stratum, &g_work); g_work_time = time(NULL); if (stratum.job.clean) { if (!opt_quiet) applog(LOG_BLUE, "%s %s block %d", short_url, algo_names[opt_algo], stratum.job.height); restart_threads(); hashlog_purge_old(); stats_purge_old(); } else if (opt_debug && !opt_quiet) { applog(LOG_BLUE, "%s asks job %d for block %d", short_url, strtoul(stratum.job.job_id, NULL, 16), stratum.job.height); } pthread_mutex_unlock(&g_work_lock); } if (!stratum_socket_full(&stratum, 120)) { applog(LOG_ERR, "Stratum connection timed out"); s = NULL; } else s = stratum_recv_line(&stratum); if (!s) { stratum_disconnect(&stratum); applog(LOG_ERR, "Stratum connection interrupted"); continue; } if (!stratum_handle_method(&stratum, s)) stratum_handle_response(s); free(s); } out: return NULL; } static void show_version_and_exit(void) { printf("%s v%s\n" #ifdef WIN32 "pthreads static %s\n" #endif "%s\n", PACKAGE_NAME, PACKAGE_VERSION, #ifdef WIN32 PTW32_VERSION_STRING, #endif curl_version()); proper_exit(0); } static void show_usage_and_exit(int status) { if (status) fprintf(stderr, "Try `" PROGRAM_NAME " --help' for more information.\n"); else printf(usage); proper_exit(status); } static void parse_arg(int key, char *arg) { char *p; int v, i; double d; switch(key) { case 'a': for (i = 0; i < ARRAY_SIZE(algo_names); i++) { if (algo_names[i] && !strcmp(arg, algo_names[i])) { opt_algo = (enum sha_algos)i; break; } } if (i == ARRAY_SIZE(algo_names)) show_usage_and_exit(1); break; case 'b': p = strstr(arg, ":"); if (p) { /* ip:port */ if (p - arg > 0) { opt_api_allow = strdup(arg); opt_api_allow[p - arg] = '\0'; } opt_api_listen = atoi(p + 1); } else if (arg) opt_api_listen = atoi(arg); break; case 'B': opt_background = true; break; case 'c': { json_error_t err; if (opt_config) json_decref(opt_config); #if JANSSON_VERSION_HEX >= 0x020000 opt_config = json_load_file(arg, 0, &err); #else opt_config = json_load_file(arg, &err); #endif if (!json_is_object(opt_config)) { applog(LOG_ERR, "JSON decode of %s failed", arg); proper_exit(1); } break; } case 'i': d = atof(arg); v = (uint32_t) d; if (v < 0 || v > 31) show_usage_and_exit(1); opt_intensity = v; if (v > 7) { /* 0 = default */ opt_work_size = (1 << v); if ((d - v) > 0.0) { opt_work_adds = (uint32_t) floor((d - v) * (1 << (v-8))) * 256; opt_work_size += opt_work_adds; applog(LOG_INFO, "Adding %u threads to intensity %u, %u cuda threads", opt_work_adds, v, opt_work_size); } else { applog(LOG_INFO, "Intensity set to %u, %u cuda threads", v, opt_work_size); } } break; case 'D': opt_debug = true; break; case 'N': v = atoi(arg); if (v < 1) opt_statsavg = INT_MAX; opt_statsavg = v; break; case 'q': opt_quiet = true; break; case 'p': free(rpc_pass); rpc_pass = strdup(arg); break; case 'P': opt_protocol = true; break; case 'r': v = atoi(arg); if (v < -1 || v > 9999) /* sanity check */ show_usage_and_exit(1); opt_retries = v; break; case 'R': v = atoi(arg); if (v < 1 || v > 9999) /* sanity check */ show_usage_and_exit(1); opt_fail_pause = v; break; case 's': v = atoi(arg); if (v < 1 || v > 9999) /* sanity check */ show_usage_and_exit(1); opt_scantime = v; break; case 'T': v = atoi(arg); if (v < 1 || v > 99999) /* sanity check */ show_usage_and_exit(1); opt_timeout = v; break; case 't': v = atoi(arg); if (v < 1 || v > 9999) /* sanity check */ show_usage_and_exit(1); opt_n_threads = v; break; case 'v': v = atoi(arg); if (v < 0 || v > 8192) /* sanity check */ show_usage_and_exit(1); opt_vote = (uint16_t)v; break; case 'm': opt_trust_pool = true; break; case 'u': free(rpc_user); rpc_user = strdup(arg); break; case 'o': /* --url */ p = strstr(arg, "://"); if (p) { if (strncasecmp(arg, "http://", 7) && strncasecmp(arg, "https://", 8) && strncasecmp(arg, "stratum+tcp://", 14)) show_usage_and_exit(1); free(rpc_url); rpc_url = strdup(arg); short_url = &rpc_url[(p - arg) + 3]; } else { if (!strlen(arg) || *arg == '/') show_usage_and_exit(1); free(rpc_url); rpc_url = (char*)malloc(strlen(arg) + 8); sprintf(rpc_url, "http://%s", arg); short_url = &rpc_url[7]; } p = strrchr(rpc_url, '@'); if (p) { char *sp, *ap; *p = '\0'; ap = strstr(rpc_url, "://") + 3; sp = strchr(ap, ':'); if (sp) { free(rpc_userpass); rpc_userpass = strdup(ap); free(rpc_user); rpc_user = (char*)calloc(sp - ap + 1, 1); strncpy(rpc_user, ap, sp - ap); free(rpc_pass); rpc_pass = strdup(sp + 1); } else { free(rpc_user); rpc_user = strdup(ap); } memmove(ap, p + 1, strlen(p + 1) + 1); short_url = p + 1; } have_stratum = !opt_benchmark && !strncasecmp(rpc_url, "stratum", 7); break; case 'O': /* --userpass */ p = strchr(arg, ':'); if (!p) show_usage_and_exit(1); free(rpc_userpass); rpc_userpass = strdup(arg); free(rpc_user); rpc_user = (char*)calloc(p - arg + 1, 1); strncpy(rpc_user, arg, p - arg); free(rpc_pass); rpc_pass = strdup(p + 1); break; case 'x': /* --proxy */ if (!strncasecmp(arg, "socks4://", 9)) opt_proxy_type = CURLPROXY_SOCKS4; else if (!strncasecmp(arg, "socks5://", 9)) opt_proxy_type = CURLPROXY_SOCKS5; #if LIBCURL_VERSION_NUM >= 0x071200 else if (!strncasecmp(arg, "socks4a://", 10)) opt_proxy_type = CURLPROXY_SOCKS4A; else if (!strncasecmp(arg, "socks5h://", 10)) opt_proxy_type = CURLPROXY_SOCKS5_HOSTNAME; #endif else opt_proxy_type = CURLPROXY_HTTP; free(opt_proxy); opt_proxy = strdup(arg); break; case 1001: free(opt_cert); opt_cert = strdup(arg); break; case 1002: use_colors = false; break; case 1005: opt_benchmark = true; want_longpoll = false; want_stratum = false; have_stratum = false; break; case 1006: print_hash_tests(); proper_exit(0); break; case 1003: want_longpoll = false; break; case 1007: want_stratum = false; break; case 'S': case 1008: applog(LOG_INFO, "Now logging to syslog..."); use_syslog = true; if (arg && strlen(arg)) opt_syslog_pfx = strdup(arg); break; case 'd': // CB { int ngpus = cuda_num_devices(); char * pch = strtok (arg,","); opt_n_threads = 0; while (pch != NULL) { if (pch[0] >= '0' && pch[0] <= '9' && pch[1] == '\0') { if (atoi(pch) < ngpus) device_map[opt_n_threads++] = atoi(pch); else { applog(LOG_ERR, "Non-existant CUDA device #%d specified in -d option", atoi(pch)); proper_exit(1); } } else { int device = cuda_finddevice(pch); if (device >= 0 && device < ngpus) device_map[opt_n_threads++] = device; else { applog(LOG_ERR, "Non-existant CUDA device '%s' specified in -d option", pch); proper_exit(1); } } // set number of active gpus num_processors = opt_n_threads; pch = strtok (NULL, ","); } } break; case 'f': // CH - Divisor for Difficulty d = atof(arg); if (d == 0) /* sanity check */ show_usage_and_exit(1); opt_difficulty = d; break; case 'V': show_version_and_exit(); case 'h': show_usage_and_exit(0); default: show_usage_and_exit(1); } if (use_syslog) use_colors = false; } /** * Parse json config file */ static void parse_config(void) { int i; json_t *val; if (!json_is_object(opt_config)) return; for (i = 0; i < ARRAY_SIZE(options); i++) { if (!options[i].name) break; if (!strcmp(options[i].name, "config")) continue; val = json_object_get(opt_config, options[i].name); if (!val) continue; if (options[i].has_arg && json_is_string(val)) { char *s = strdup(json_string_value(val)); if (!s) continue; parse_arg(options[i].val, s); free(s); } else if (options[i].has_arg && json_is_integer(val)) { char buf[16]; sprintf(buf, "%d", (int) json_integer_value(val)); parse_arg(options[i].val, buf); } else if (options[i].has_arg && json_is_real(val)) { char buf[16]; sprintf(buf, "%f", json_real_value(val)); parse_arg(options[i].val, buf); } else if (!options[i].has_arg) { if (json_is_true(val)) parse_arg(options[i].val, (char*) ""); } else applog(LOG_ERR, "JSON option %s invalid", options[i].name); } } static void parse_cmdline(int argc, char *argv[]) { int key; while (1) { #if HAVE_GETOPT_LONG key = getopt_long(argc, argv, short_options, options, NULL); #else key = getopt(argc, argv, short_options); #endif if (key < 0) break; parse_arg(key, optarg); } if (optind < argc) { fprintf(stderr, "%s: unsupported non-option argument '%s'\n", argv[0], argv[optind]); show_usage_and_exit(1); } parse_config(); if (opt_algo == ALGO_HEAVY && opt_vote == 9999) { fprintf(stderr, "%s: Heavycoin hash requires block reward vote parameter (see --vote)\n", argv[0]); show_usage_and_exit(1); } } #ifndef WIN32 static void signal_handler(int sig) { switch (sig) { case SIGHUP: applog(LOG_INFO, "SIGHUP received"); break; case SIGINT: signal(sig, SIG_IGN); applog(LOG_INFO, "SIGINT received, exiting"); proper_exit(0); break; case SIGTERM: applog(LOG_INFO, "SIGTERM received, exiting"); proper_exit(0); break; } } #else BOOL WINAPI ConsoleHandler(DWORD dwType) { switch (dwType) { case CTRL_C_EVENT: applog(LOG_INFO, "CTRL_C_EVENT received, exiting"); proper_exit(0); break; case CTRL_BREAK_EVENT: applog(LOG_INFO, "CTRL_BREAK_EVENT received, exiting"); proper_exit(0); break; default: return false; } return true; } #endif int main(int argc, char *argv[]) { struct thr_info *thr; long flags; int i; printf("*** ccminer " PACKAGE_VERSION " for nVidia GPUs by tpruvot@github ***\n"); #ifdef WIN32 printf("\tBuilt with VC++ 2013 and nVidia CUDA SDK 6.5\n\n"); #else printf("\tBuilt with the nVidia CUDA SDK 6.5\n\n"); #endif printf(" Based on pooler cpuminer 2.3.2\n"); printf(" CUDA support by Christian Buchner and Christian H.\n"); printf(" Include some of djm34 additions and sp optimisations\n\n"); printf("BTC donation address: 1AJdfCpLWPNoAMDfHF1wD5y8VgKSSTHxPo\n\n"); rpc_user = strdup(""); rpc_pass = strdup(""); pthread_mutex_init(&applog_lock, NULL); // number of cpus for thread affinity #if defined(WIN32) SYSTEM_INFO sysinfo; GetSystemInfo(&sysinfo); num_cpus = sysinfo.dwNumberOfProcessors; #elif defined(_SC_NPROCESSORS_CONF) num_cpus = sysconf(_SC_NPROCESSORS_CONF); #elif defined(CTL_HW) && defined(HW_NCPU) int req[] = { CTL_HW, HW_NCPU }; size_t len = sizeof(num_cpus); sysctl(req, 2, &num_cpus, &len, NULL, 0); #else num_cpus = 1; #endif if (num_cpus < 1) num_cpus = 1; // number of gpus num_processors = cuda_num_devices(); cuda_devicenames(); /* parse command line */ parse_cmdline(argc, argv); if (!opt_benchmark && !rpc_url) { fprintf(stderr, "%s: no URL supplied\n", argv[0]); show_usage_and_exit(1); } if (!rpc_userpass) { rpc_userpass = (char*)malloc(strlen(rpc_user) + strlen(rpc_pass) + 2); if (!rpc_userpass) return 1; sprintf(rpc_userpass, "%s:%s", rpc_user, rpc_pass); } /* init stratum data.. */ memset(&stratum.url, 0, sizeof(stratum)); pthread_mutex_init(&stats_lock, NULL); pthread_mutex_init(&g_work_lock, NULL); pthread_mutex_init(&stratum.sock_lock, NULL); pthread_mutex_init(&stratum.work_lock, NULL); flags = !opt_benchmark && strncmp(rpc_url, "https:", 6) ? (CURL_GLOBAL_ALL & ~CURL_GLOBAL_SSL) : CURL_GLOBAL_ALL; if (curl_global_init(flags)) { applog(LOG_ERR, "CURL initialization failed"); return 1; } #ifndef WIN32 if (opt_background) { i = fork(); if (i < 0) exit(1); if (i > 0) exit(0); i = setsid(); if (i < 0) applog(LOG_ERR, "setsid() failed (errno = %d)", errno); i = chdir("/"); if (i < 0) applog(LOG_ERR, "chdir() failed (errno = %d)", errno); signal(SIGHUP, signal_handler); signal(SIGTERM, signal_handler); } /* Always catch Ctrl+C */ signal(SIGINT, signal_handler); #else SetConsoleCtrlHandler((PHANDLER_ROUTINE)ConsoleHandler, TRUE); #endif if (num_processors == 0) { applog(LOG_ERR, "No CUDA devices found! terminating."); exit(1); } if (!opt_n_threads) opt_n_threads = num_processors; #ifdef HAVE_SYSLOG_H if (use_syslog) openlog(opt_syslog_pfx, LOG_PID, LOG_USER); #endif work_restart = (struct work_restart *)calloc(opt_n_threads, sizeof(*work_restart)); if (!work_restart) return 1; thr_info = (struct thr_info *)calloc(opt_n_threads + 4, sizeof(*thr)); if (!thr_info) return 1; thr_hashrates = (double *) calloc(opt_n_threads, sizeof(double)); if (!thr_hashrates) return 1; /* init workio thread info */ work_thr_id = opt_n_threads; thr = &thr_info[work_thr_id]; thr->id = work_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start work I/O thread */ if (pthread_create(&thr->pth, NULL, workio_thread, thr)) { applog(LOG_ERR, "workio thread create failed"); return 1; } if (want_longpoll && !have_stratum) { /* init longpoll thread info */ longpoll_thr_id = opt_n_threads + 1; thr = &thr_info[longpoll_thr_id]; thr->id = longpoll_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start longpoll thread */ if (unlikely(pthread_create(&thr->pth, NULL, longpoll_thread, thr))) { applog(LOG_ERR, "longpoll thread create failed"); return 1; } } if (want_stratum) { /* init stratum thread info */ stratum_thr_id = opt_n_threads + 2; thr = &thr_info[stratum_thr_id]; thr->id = stratum_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start stratum thread */ if (unlikely(pthread_create(&thr->pth, NULL, stratum_thread, thr))) { applog(LOG_ERR, "stratum thread create failed"); return 1; } if (have_stratum) tq_push(thr_info[stratum_thr_id].q, strdup(rpc_url)); } #ifdef USE_WRAPNVML #ifndef WIN32 /* nvml is currently not usable on Windows (even for x64) */ hnvml = wrap_nvml_create(); if (hnvml) applog(LOG_INFO, "NVML GPU monitoring enabled."); #else if (wrap_nvapi_init() == 0) applog(LOG_INFO, "NVAPI GPU monitoring enabled."); #endif else applog(LOG_INFO, "GPU monitoring is not available."); #endif if (opt_api_listen) { /* api thread */ api_thr_id = opt_n_threads + 3; thr = &thr_info[api_thr_id]; thr->id = api_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start stratum thread */ if (unlikely(pthread_create(&thr->pth, NULL, api_thread, thr))) { applog(LOG_ERR, "api thread create failed"); return 1; } } /* start mining threads */ for (i = 0; i < opt_n_threads; i++) { thr = &thr_info[i]; thr->id = i; thr->gpu.gpu_id = device_map[i]; thr->gpu.thr_id = i; thr->q = tq_new(); if (!thr->q) return 1; if (unlikely(pthread_create(&thr->pth, NULL, miner_thread, thr))) { applog(LOG_ERR, "thread %d create failed", i); return 1; } } applog(LOG_INFO, "%d miner threads started, " "using '%s' algorithm.", opt_n_threads, algo_names[opt_algo]); #ifdef WIN32 timeBeginPeriod(1); // enable high timer precision (similar to Google Chrome Trick) #endif /* main loop - simply wait for workio thread to exit */ pthread_join(thr_info[work_thr_id].pth, NULL); #ifdef WIN32 timeEndPeriod(1); // be nice and forego high timer precision #endif applog(LOG_INFO, "workio thread dead, exiting."); proper_exit(0); return 0; }