/** * Penta Blake-512 Cuda Kernel (Tested on SM 5.0) * * Tanguy Pruvot - Aug. 2014 */ #include "miner.h" extern "C" { #include "sph/sph_blake.h" #include #include } /* threads per block */ #define TPB 192 /* hash by cpu with blake 256 */ extern "C" void pentablakehash(void *output, const void *input) { unsigned char hash[128]; #define hashB hash + 64 sph_blake512_context ctx; sph_blake512_init(&ctx); sph_blake512(&ctx, input, 80); sph_blake512_close(&ctx, hash); sph_blake512(&ctx, hash, 64); sph_blake512_close(&ctx, hashB); sph_blake512(&ctx, hashB, 64); sph_blake512_close(&ctx, hash); sph_blake512(&ctx, hash, 64); sph_blake512_close(&ctx, hashB); sph_blake512(&ctx, hashB, 64); sph_blake512_close(&ctx, hash); memcpy(output, hash, 32); } #include "cuda_helper.h" __constant__ static uint32_t __align__(32) c_Target[8]; __constant__ static uint64_t __align__(32) c_data[32]; static uint32_t *d_hash[8]; static uint32_t *d_resNounce[8]; static uint32_t *h_resNounce[8]; static uint32_t extra_results[2] = { UINT32_MAX, UINT32_MAX }; /* prefer uint32_t to prevent size conversions = speed +5/10 % */ __constant__ static uint32_t __align__(32) c_sigma[16][16]; const uint32_t host_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; __device__ __constant__ static const uint64_t __align__(32) c_IV512[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; __device__ __constant__ const uint64_t c_u512[16] = { 0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL, 0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL, 0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL, 0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL, 0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL, 0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL, 0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL, 0x0801f2e2858efc16ULL, 0x636920d871574e69ULL }; #define G(a,b,c,d,x) { \ uint32_t idx1 = c_sigma[i][x]; \ uint32_t idx2 = c_sigma[i][x+1]; \ v[a] += (m[idx1] ^ c_u512[idx2]) + v[b]; \ v[d] = SWAPDWORDS(v[d] ^ v[a]); \ v[c] += v[d]; \ v[b] = ROTR64(v[b] ^ v[c], 25); \ v[a] += (m[idx2] ^ c_u512[idx1]) + v[b]; \ v[d] = ROTR64(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = ROTR64(v[b] ^ v[c], 11); \ } // Hash-Padding __device__ __constant__ static const uint64_t d_constHashPadding[8] = { 0x0000000000000080ull, 0, 0, 0, 0, 0x0100000000000000ull, 0, 0x0002000000000000ull }; #if 0 __device__ __constant__ static const uint64_t __align__(32) c_Padding[16] = { 0, 0, 0, 0, 0x80000000ULL, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640, }; __device__ static void pentablake_compress(uint64_t *h, const uint64_t *block, const uint32_t T0) { uint64_t v[16], m[16]; m[0] = block[0]; m[1] = block[1]; m[2] = block[2]; m[3] = block[3]; for (uint32_t i = 4; i < 16; i++) { m[i] = (T0 == 0x200) ? block[i] : c_Padding[i]; } //#pragma unroll 8 for(uint32_t i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = c_u512[0]; v[ 9] = c_u512[1]; v[10] = c_u512[2]; v[11] = c_u512[3]; v[12] = xor1(c_u512[4], T0); v[13] = xor1(c_u512[5], T0); v[14] = c_u512[6]; v[15] = c_u512[7]; for (uint32_t i = 0; i < 16; i++) { /* column step */ G(0, 4, 0x8, 0xC, 0x0); G(1, 5, 0x9, 0xD, 0x2); G(2, 6, 0xA, 0xE, 0x4); G(3, 7, 0xB, 0xF, 0x6); /* diagonal step */ G(0, 5, 0xA, 0xF, 0x8); G(1, 6, 0xB, 0xC, 0xA); G(2, 7, 0x8, 0xD, 0xC); G(3, 4, 0x9, 0xE, 0xE); } //#pragma unroll 16 for (uint32_t i = 0; i < 16; i++) { uint32_t j = i % 8; h[j] ^= v[i]; } } __global__ void pentablake_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nounce = startNounce + thread; uint64_t h[8]; #pragma unroll for(int i=0; i<8; i++) { h[i] = c_IV512[i]; } uint64_t ending[4]; ending[0] = c_data[16]; ending[1] = c_data[17]; ending[2] = c_data[18]; ending[3] = nounce; /* our tested value */ pentablake_compress(h, ending, 640); // ----------------------------------- for (int r = 0; r < 4; r++) { uint64_t data[8]; for (int i = 0; i < 7; i++) { data[i] = h[i]; } pentablake_compress(h, data, 512); /* todo: use h,h when ok*/ } } } #endif __device__ static void pentablake_compress(uint64_t *h, const uint64_t *block, const uint64_t T0) { uint64_t v[16], m[16], i; #pragma unroll 16 for(i = 0; i < 16; i++) { m[i] = cuda_swab64(block[i]); } #pragma unroll 8 for (i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = c_u512[0]; v[ 9] = c_u512[1]; v[10] = c_u512[2]; v[11] = c_u512[3]; v[12] = c_u512[4] ^ T0; v[13] = c_u512[5] ^ T0; v[14] = c_u512[6]; v[15] = c_u512[7]; //#pragma unroll 16 for( i = 0; i < 16; i++) { /* column step */ G(0, 4, 0x8, 0xC, 0x0); G(1, 5, 0x9, 0xD, 0x2); G(2, 6, 0xA, 0xE, 0x4); G(3, 7, 0xB, 0xF, 0x6); /* diagonal step */ G(0, 5, 0xA, 0xF, 0x8); G(1, 6, 0xB, 0xC, 0xA); G(2, 7, 0x8, 0xD, 0xC); G(3, 4, 0x9, 0xE, 0xE); } //#pragma unroll 16 for (i = 0; i < 16; i++) { uint32_t idx = i % 8; h[idx] ^= v[i]; } } __global__ void pentablake_gpu_hash_80(int threads, const uint32_t startNounce, void *outputHash) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint64_t h[8]; uint64_t buf[16]; uint32_t nounce = startNounce + thread; //#pragma unroll 8 for(int i=0; i<8; i++) h[i] = c_IV512[i]; //#pragma unroll 16 for (int i=0; i < 16; i++) buf[i] = c_data[i]; // The test Nonce ((uint32_t*)buf)[19] = cuda_swab32(nounce); pentablake_compress(h, buf, 640ULL); #if __CUDA_ARCH__ < 300 uint32_t *outHash = (uint32_t *)outputHash + 16 * thread; #pragma unroll 8 for (uint32_t i=0; i < 8; i++) { outHash[2*i] = cuda_swab32( _HIWORD(h[i]) ); outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); } #else uint64_t *outHash = (uint64_t *)outputHash + 8 * thread; for (uint32_t i=0; i < 8; i++) { outHash[i] = cuda_swab64( h[i] ); } #endif } } __host__ void pentablake_cpu_hash_80(int thr_id, int threads, const uint32_t startNounce, uint32_t *d_outputHash, int order) { const int threadsperblock = TPB; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; pentablake_gpu_hash_80 <<>> (threads, startNounce, d_outputHash); //MyStreamSynchronize(NULL, order, thr_id); cudaDeviceSynchronize(); } __global__ void pentablake_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint64_t *inpHash = &g_hash[thread<<3]; // hashPosition * 8 uint64_t buf[16]; // 128 Bytes uint64_t h[8]; // State #pragma unroll 8 for (int i=0; i<8; i++) h[i] = c_IV512[i]; // Message for first round #pragma unroll 8 for (int i=0; i < 8; ++i) buf[i] = inpHash[i]; #pragma unroll 8 for (int i=0; i < 8; i++) buf[i+8] = d_constHashPadding[i]; // Ending round pentablake_compress(h, buf, 512); #if __CUDA_ARCH__ < 300 uint32_t *outHash = (uint32_t*)&g_hash[thread<<3]; #pragma unroll 8 for (int i=0; i < 8; i++) { outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) ); outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); } #else uint64_t *outHash = &g_hash[thread<<3]; for (int i=0; i < 8; i++) { outHash[i] = cuda_swab64(h[i]); } #endif } } __host__ void pentablake_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order) { const int threadsperblock = TPB; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; pentablake_gpu_hash_64 <<>> (threads, startNounce, (uint64_t*)d_outputHash); //MyStreamSynchronize(NULL, order, thr_id); cudaDeviceSynchronize(); } #if 0 __host__ uint32_t pentablake_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce) { const int threadsperblock = TPB; uint32_t result = UINT32_MAX; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNounce[thr_id], 0xff, 2*sizeof(uint32_t)) != cudaSuccess) return result; pentablake_gpu_hash_80<<>>(threads, startNounce, d_resNounce[thr_id]); cudaDeviceSynchronize(); if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { cudaThreadSynchronize(); result = h_resNounce[thr_id][0]; extra_results[0] = h_resNounce[thr_id][1]; } return result; } #endif __global__ void pentablake_gpu_check_hash(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *resNounce) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = startNounce + thread; uint32_t *inpHash = &g_hash[thread<<4]; uint32_t h[8]; #pragma unroll 8 for (int i=0; i < 8; i++) h[i] = inpHash[i]; for (int i = 7; i >= 0; i--) { uint32_t hash = h[i]; // cuda_swab32(h[i]); if (hash > c_Target[i]) { return; } if (hash < c_Target[i]) { break; } } /* keep the smallest nounce, + extra one if found */ if (resNounce[0] > nounce) { resNounce[1] = resNounce[0]; resNounce[0] = nounce; } else resNounce[1] = nounce; } } __host__ static uint32_t pentablake_check_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash, int order) { const int threadsperblock = TPB; uint32_t result = UINT32_MAX; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNounce[thr_id], 0xff, 2*sizeof(uint32_t)) != cudaSuccess) return result; pentablake_gpu_check_hash <<>> (threads, startNounce, d_inputHash, d_resNounce[thr_id]); CUDA_SAFE_CALL(cudaDeviceSynchronize()); if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { cudaThreadSynchronize(); result = h_resNounce[thr_id][0]; extra_results[0] = h_resNounce[thr_id][1]; } return result; } __host__ void pentablake_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget) { uint8_t data[128]; memcpy((void*) data, (void*) pdata, 80); memset(data+80, 0, 48); // to swab... data[80] = 0x80; data[111] = 1; data[126] = 0x02; data[127] = 0x80; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, ptarget, 32, 0, cudaMemcpyHostToDevice)); } static bool init[8] = { 0 }; extern "C" int scanhash_pentablake(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { const uint32_t first_nonce = pdata[19]; uint32_t endiandata[20]; int rc = 0; uint32_t throughput = opt_work_size ? opt_work_size : (128 * 2560); // 18.5 throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x000F; if (!init[thr_id]) { if (active_gpus > 1) { cudaSetDevice(device_map[thr_id]); } CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 64 * throughput)); CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], 2*sizeof(uint32_t))); CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], 2*sizeof(uint32_t))); init[thr_id] = true; } for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); pentablake_cpu_setBlock_80(endiandata, ptarget); do { int order = 0; // GPU HASH pentablake_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], order++); pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], order++); pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], order++); pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], order++); uint32_t foundNonce = pentablake_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++); if (foundNonce != UINT32_MAX) { const uint32_t Htarg = ptarget[7]; uint32_t vhashcpu[8]; be32enc(&endiandata[19], foundNonce); pentablakehash(vhashcpu, endiandata); if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) { rc = 1; *hashes_done = pdata[19] - first_nonce + throughput; if (extra_results[0] != UINT32_MAX) { // Rare but possible if the throughput is big applog(LOG_NOTICE, "GPU found more than one result yippee!"); pdata[21] = extra_results[0]; extra_results[0] = UINT32_MAX; rc++; } pdata[19] = foundNonce; return rc; } else if (vhashcpu[7] > Htarg) { applog(LOG_WARNING, "GPU #%d: result for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[7], Htarg); } else { applog(LOG_WARNING, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce + 1; cudaDeviceSynchronize(); return rc; }