/* * Copyright 2008-2012 NVIDIA Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <thrust/detail/config.h> #include <thrust/iterator/iterator_traits.h> #include <thrust/detail/minmax.h> #include <thrust/system/detail/internal/decompose.h> #include <thrust/system/cuda/detail/extern_shared_ptr.h> #include <thrust/system/cuda/detail/block/reduce.h> #include <thrust/system/cuda/detail/detail/launch_closure.h> #include <thrust/system/cuda/detail/detail/launch_calculator.h> namespace thrust { namespace system { namespace cuda { namespace detail { template <typename InputIterator, typename OutputIterator, typename BinaryFunction, typename Decomposition, typename Context> struct commutative_reduce_intervals_closure { InputIterator input; OutputIterator output; BinaryFunction binary_op; Decomposition decomposition; unsigned int shared_array_size; typedef Context context_type; context_type context; commutative_reduce_intervals_closure(InputIterator input, OutputIterator output, BinaryFunction binary_op, Decomposition decomposition, unsigned int shared_array_size, Context context = Context()) : input(input), output(output), binary_op(binary_op), decomposition(decomposition), shared_array_size(shared_array_size), context(context) {} __device__ __thrust_forceinline__ void operator()(void) { typedef typename thrust::iterator_value<OutputIterator>::type OutputType; extern_shared_ptr<OutputType> shared_array; typedef typename Decomposition::index_type index_type; // this block processes results in [range.begin(), range.end()) thrust::system::detail::internal::index_range<index_type> range = decomposition[context.block_index()]; index_type i = range.begin() + context.thread_index(); input += i; if (range.size() < context.block_dimension()) { // compute reduction with the first shared_array_size threads if (context.thread_index() < thrust::min<index_type>(shared_array_size,range.size())) { OutputType sum = *input; i += shared_array_size; input += shared_array_size; while (i < range.end()) { OutputType val = *input; sum = binary_op(sum, val); i += shared_array_size; input += shared_array_size; } shared_array[context.thread_index()] = sum; } } else { // compute reduction with all blockDim.x threads OutputType sum = *input; i += context.block_dimension(); input += context.block_dimension(); while (i < range.end()) { OutputType val = *input; sum = binary_op(sum, val); i += context.block_dimension(); input += context.block_dimension(); } // write first shared_array_size values into shared memory if (context.thread_index() < shared_array_size) shared_array[context.thread_index()] = sum; // accumulate remaining values (if any) to shared memory in stages if (context.block_dimension() > shared_array_size) { unsigned int lb = shared_array_size; unsigned int ub = shared_array_size + lb; while (lb < context.block_dimension()) { context.barrier(); if (lb <= context.thread_index() && context.thread_index() < ub) { OutputType tmp = shared_array[context.thread_index() - lb]; shared_array[context.thread_index() - lb] = binary_op(tmp, sum); } lb += shared_array_size; ub += shared_array_size; } } } context.barrier(); block::reduce_n(context, shared_array, thrust::min<index_type>(range.size(), shared_array_size), binary_op); if (context.thread_index() == 0) { output += context.block_index(); *output = shared_array[0]; } } }; __THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_BEGIN template <typename ExecutionPolicy, typename InputIterator, typename OutputIterator, typename BinaryFunction, typename Decomposition> void reduce_intervals(execution_policy<ExecutionPolicy> &, InputIterator input, OutputIterator output, BinaryFunction binary_op, Decomposition decomp) { // we're attempting to launch a kernel, assert we're compiling with nvcc // ======================================================================== // X Note to the user: If you've found this line due to a compiler error, X // X you need to compile your code using nvcc, rather than g++ or cl.exe X // ======================================================================== THRUST_STATIC_ASSERT( (thrust::detail::depend_on_instantiation<InputIterator, THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC>::value) ); if (decomp.size() == 0) return; // TODO if (decomp.size() > deviceProperties.maxGridSize[0]) throw cuda exception (or handle general case) typedef detail::blocked_thread_array Context; typedef commutative_reduce_intervals_closure<InputIterator,OutputIterator,BinaryFunction,Decomposition,Context> Closure; typedef typename thrust::iterator_value<OutputIterator>::type OutputType; detail::launch_calculator<Closure> calculator; thrust::tuple<size_t,size_t,size_t> config = calculator.with_variable_block_size_available_smem(); //size_t max_blocks = thrust::get<0>(config); size_t block_size = thrust::get<1>(config); size_t max_memory = thrust::get<2>(config); // determine shared array size size_t shared_array_size = thrust::min(max_memory / sizeof(OutputType), block_size); size_t shared_array_bytes = sizeof(OutputType) * shared_array_size; // TODO if (shared_array_size < 1) throw cuda exception "insufficient shared memory" Closure closure(input, output, binary_op, decomp, shared_array_size); detail::launch_closure(closure, decomp.size(), block_size, shared_array_bytes); } __THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_END } // end namespace detail } // end namespace cuda } // end namespace system } // end namespace thrust