/** * Blake-256 Cuda Kernel (Tested on SM 5.0) * * Tanguy Pruvot - Aug. 2014 */ #include "miner.h" extern "C" { #include "sph/sph_blake.h" #include #include } /* threads per block */ #define TPB 128 /* hash by cpu with blake 256 */ extern "C" void blake32hash(void *output, const void *input) { unsigned char hash[64]; sph_blake256_context ctx; sph_blake256_init(&ctx); sph_blake256(&ctx, input, 80); sph_blake256_close(&ctx, hash); memcpy(output, hash, 32); } #include "cuda_helper.h" // in cpu-miner.c extern bool opt_benchmark; extern bool opt_debug; extern int device_map[8]; extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); __constant__ static uint32_t c_Target[8]; __constant__ static uint32_t __align__(32) c_PaddedMessage80[32]; // padded message (80 bytes + padding) static uint32_t *d_resNounce[8]; static uint32_t *h_resNounce[8]; __constant__ static uint8_t c_sigma[16][16]; const uint8_t host_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; __device__ __constant__ static const uint32_t c_IV256[8] = { SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C), SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) }; __device__ __constant__ static const uint32_t c_u256[16] = { SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) }; #if 0 #define GS(m0, m1, c0, c1, a, b, c, d) do { \ a = SPH_T32(a + b + (m0 ^ c1)); \ d = SPH_ROTR32(d ^ a, 16); \ c = SPH_T32(c + d); \ b = SPH_ROTR32(b ^ c, 12); \ a = SPH_T32(a + b + (m1 ^ c0)); \ d = SPH_ROTR32(d ^ a, 8); \ c = SPH_T32(c + d); \ b = SPH_ROTR32(b ^ c, 7); \ } while (0) #define ROUND_S(r) do { \ GS(Mx(r, 0x0), Mx(r, 0x1), CSx(r, 0x0), CSx(r, 0x1), v[0], v[4], v[0x8], v[0xC]); \ GS(Mx(r, 0x2), Mx(r, 0x3), CSx(r, 0x2), CSx(r, 0x3), v[1], v[5], v[0x9], v[0xD]); \ GS(Mx(r, 0x4), Mx(r, 0x5), CSx(r, 0x4), CSx(r, 0x5), v[2], v[6], v[0xA], v[0xE]); \ GS(Mx(r, 0x6), Mx(r, 0x7), CSx(r, 0x6), CSx(r, 0x7), v[3], v[7], v[0xB], v[0xF]); \ GS(Mx(r, 0x8), Mx(r, 0x9), CSx(r, 0x8), CSx(r, 0x9), v[0], v[5], v[0xA], v[0xF]); \ GS(Mx(r, 0xA), Mx(r, 0xB), CSx(r, 0xA), CSx(r, 0xB), v[1], v[6], v[0xB], v[0xC]); \ GS(Mx(r, 0xC), Mx(r, 0xD), CSx(r, 0xC), CSx(r, 0xD), v[2], v[7], v[0x8], v[0xD]); \ GS(Mx(r, 0xE), Mx(r, 0xF), CSx(r, 0xE), CSx(r, 0xF), v[3], v[4], v[0x9], v[0xE]); \ } while (0) #endif #define GS(a,b,c,d,e) { \ v[a] += (m[sigma[i][e]] ^ u256[sigma[i][e+1]]) + v[b]; \ v[d] = SPH_ROTR32(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ \ v[a] += (m[sigma[i][e+1]] ^ u256[sigma[i][e]]) + v[b]; \ v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } #define BLAKE256_ROUNDS 14 __device__ static void blake256_compress(uint32_t *h, uint32_t *block, uint8_t ((*sigma)[16]), const uint32_t *u256, const uint32_t T0, uint8_t nullt = 1) { uint32_t /* __align__(8) */ v[16]; uint32_t /* __align__(8) */ m[16]; //#pragma unroll for (int i = 0; i < 16; ++i) { m[i] = block[i]; } //#pragma unroll 8 for(int i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = u256[0]; v[ 9] = u256[1]; v[10] = u256[2]; v[11] = u256[3]; v[12] = u256[4] ^ T0; v[13] = u256[5] ^ T0; v[14] = u256[6]; v[15] = u256[7]; //#pragma unroll for (int i = 0; i < BLAKE256_ROUNDS; i++) { /* column step */ GS(0, 4, 0x8, 0xC, 0); GS(1, 5, 0x9, 0xD, 2); GS(2, 6, 0xA, 0xE, 4); GS(3, 7, 0xB, 0xF, 6); /* diagonal step */ GS(0, 5, 0xA, 0xF, 0x8); GS(1, 6, 0xB, 0xC, 0xA); GS(2, 7, 0x8, 0xD, 0xC); GS(3, 4, 0x9, 0xE, 0xE); } //#pragma unroll 16 for(int i = 0; i < 16; i++) h[i % 8] ^= v[i]; } #if __CUDA_ARCH__ >= 200 /* memory should be aligned to use __nvvm_memset */ #if (__NV_POINTER_SIZE == 64) # define SZCT uint64_t #else # define SZCT uint32_t #endif extern __device__ __device_builtin__ void __nvvm_memset(uint8_t *, unsigned char, SZCT, int); #endif __global__ void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nounce = startNounce + thread; uint32_t /* __align__(8) */ msg[16]; uint32_t h[8]; #pragma unroll for(int i=0; i<8; i++) h[i] = c_IV256[i]; blake256_compress(h, c_PaddedMessage80, c_sigma, c_u256, 0x200); /* 512 = 0x200 */ // ------ Close: Bytes 64 to 80 ------ msg[0] = c_PaddedMessage80[16]; msg[1] = c_PaddedMessage80[17]; msg[2] = c_PaddedMessage80[18]; msg[3] = nounce; /* our tested value */ msg[4] = 0x80000000UL; //cuda_swab32(0x80U); msg[5] = 0; // uchar[17 to 55] msg[6] = 0; msg[7] = 0; msg[8] = 0; msg[9] = 0; msg[10] = 0; msg[11] = 0; msg[12] = 0; msg[13] = 1; msg[14] = 0; msg[15] = 0x280; blake256_compress(h, msg, c_sigma, c_u256, 0x280); for (int i = 7; i >= 0; i--) { uint32_t hash = cuda_swab32(h[i]); if (hash > c_Target[i]) { return; } if (hash < c_Target[i]) { break; } } /* keep the smallest nounce, hmm... */ if(resNounce[0] > nounce) resNounce[0] = nounce; } } __host__ uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce) { const int threadsperblock = TPB; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; uint32_t result = 0xffffffffU; cudaMemset(d_resNounce[thr_id], 0xff, sizeof(uint32_t)); blake256_gpu_hash_80<<>>(threads, startNounce, d_resNounce[thr_id]); MyStreamSynchronize(NULL, 1, thr_id); if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost)) { cudaThreadSynchronize(); result = *h_resNounce[thr_id]; } return result; } __host__ void blake256_cpu_setBlock_80(uint32_t *pdata, const void *ptarget) { uint32_t PaddedMessage[32]; memcpy(PaddedMessage, pdata, 80); memset(&PaddedMessage[20], 0, 48); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, sizeof(PaddedMessage), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, ptarget, 32, 0, cudaMemcpyHostToDevice)); } extern "C" int scanhash_blake32(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { const uint32_t first_nonce = pdata[19]; static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint32_t throughput = min(TPB * 2048, max_nonce - first_nonce); int rc = 0; if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x00000f; if (!init[thr_id]) { CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id])); CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], sizeof(uint32_t))); CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], sizeof(uint32_t))); init[thr_id] = true; } if (throughput < (TPB * 2048)) applog(LOG_WARNING, "throughput=%u, start=%x, max=%x", throughput, first_nonce, max_nonce); if (max_nonce < first_nonce) { applog(LOG_ERR, "start=%x > end=%x !", first_nonce, max_nonce); return 0; } blake256_cpu_setBlock_80(pdata, (void*)ptarget); do { // GPU HASH uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19]); if (foundNonce != 0xffffffff) { uint32_t endiandata[20]; uint32_t vhashcpu[8]; uint32_t Htarg = ptarget[7]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); if (opt_debug && !opt_quiet) { applog(LOG_DEBUG, "throughput=%u, start=%x, max=%x, pdata=%08x...%08x", throughput, first_nonce, max_nonce, endiandata[0], endiandata[7]); applog_hash((unsigned char *)pdata); } be32enc(&endiandata[19], foundNonce); blake32hash(vhashcpu, endiandata); if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) { pdata[19] = foundNonce; rc = 1; goto exit_scan; } else if (vhashcpu[7] > Htarg) { applog(LOG_WARNING, "GPU #%d: result for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[7], Htarg); } else if (vhashcpu[6] > ptarget[6]) { applog(LOG_WARNING, "GPU #%d: hash[6] for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[6], ptarget[6]); } else { applog(LOG_WARNING, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); exit_scan: *hashes_done = pdata[19] - first_nonce + 1; return rc; }